16.070
Introduction to Computers & Programming

Hashing: breaking the log n barrier

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

Hashing and Hash Tables

- Represent a table of names
 - Set aside an array big enough to contain one element for each possible string of letters
 - Convert from names to integers
 - Tells where person’s phone number is immediately

- Dictionary operations
 - Insert / delete /search

<table>
<thead>
<tr>
<th>Dictionary operations</th>
<th>(check, a restraint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-access table</td>
<td>(check, examination)</td>
</tr>
<tr>
<td>Hash table</td>
<td>(check, a bill)</td>
</tr>
<tr>
<td>Hash function</td>
<td>(check, a pattern)</td>
</tr>
<tr>
<td>Collision resolution</td>
<td>(check, a small crack)</td>
</tr>
<tr>
<td>Chaining</td>
<td>(check, move in chess)</td>
</tr>
</tbody>
</table>

“hashing”

O(n)

O(lg n)

O(1)
Direct Addressing

- **Direct addressing** is a simple technique that works well when the universe U of keys is reasonably small
- Assume we have:
 - Application needs a dynamic set
 - All elements of dynamic set have keys, from Universe $U = \{0, 1, \ldots, m-1\}$ of keys, associated with them
 - m is not too large
 - No two elements have the same key
- Direct-address tables
 - Implement a dynamic set as an array (direct-address table), $T[0..m-1]$
 - Each slot corresponds to a key in U
 - Slot k points to an element in dynamic set with key k
 - If dynamic set contains no element with key k then $T[k] = \text{NIL}$

Dictionary operations

- **Insert**
 - `direct_access_insert (T, x)`
 - $T[\text{key}[x]] := x \quad \mathcal{O}(1)$
- **Delete**
 - `direct_access_delete (T, x)`
 - $T[\text{key}[x]] := \text{NIL} \quad \mathcal{O}(1)$
- **Search**
 - `direct_access_search (T, k)`
 - \text{return} $T[k] \quad \mathcal{O}(1)$

The problem with **direct-addressing** is:

- If universe U is large, storing a table of size $|U|$ is impractical
- If the set of actually stored keys k is small relative to U, then most of the space allocated for T is wasted

The advantages of **hash table** is:

- When set k of keys stored in dictionary is much smaller than the universe U of all keys, a hash table requires much less space than a direct-address table
- Storage requirements are reduced to $\Theta(|k|)$ instead of $\Theta(|U|)$
The differences are:

- Searching for an element using hashing requires $\Theta(1)$ on average
- Searching for an element using direct-addressing requires $\Theta(1)$ in the worst-case
- Direct-addressing stores an element with key k in slot (also called a bucket) k
- Hashing stores an element in slot $h(k)$, where $h(k)$ is a hash function h used to compute the slot from the key k

Some definitions

- **Hash function** h: is used to compute the slot in the hash table from the key k
- **Hash table** T: where hash function h maps the universe U of all possible keys into slots $T[0 .. m-1]$

 $$h: U \rightarrow \{0, 1, .., m-1\}$$

- **Hashes** means mapping key k to slot $h(k)$
- **Hash value** is the $h(k)$ of key k
- **Collisions** are when two keys hash to the same slot
- **Chaining** is putting all elements that hash to the same slot into a linked list or double linked list for $O(1)$ time deletion

Desired properties of a Hash Function

- An ideal hash function should avoid collisions entirely

 - The “birthday paradox” makes this improbable
 - What is the probability that at least 2 people in a room of 23 will have the same birthday?

- A hash function must be deterministic, in that a given input k should always produce the same $h(k)$ output

- Since $|U| > m$, there must be 2 keys that have the same hash value

 - A well designed random output hash function may minimize collisions, but we need a mechanism for handling collisions
Collision resolution by chaining

- In **chaining** we put all the elements that hash to the same slot in a **linked list**.
 - Slot \(j \) contains a pointer to the **head** of the list of all stored elements that hash to \(j \).
 - If no element hashes to \(j \), then \(j \) contains NIL.

Dictionary operations

- **Insert**
 - `chained_hash_insert(T, x)`
 - insert \(x \) at head of list \(T[h(key[x])] \)
 - worst-case runtime \(\mathcal{O}(1) \)

- **Delete**
 - `chained_hash_delete(T, x)`
 - delete \(x \) from list \(T[h(key[x])] \)
 - worst-case runtime \(\mathcal{O}(1) \) if lists are doubly-linked

- **Search**
 - `chained_hash_search(T, k)`
 - search for element with key \(k \) in list \(T[h(k)] \)
 - worst-case runtime \(\mathcal{O}(1) \)
 - If the number of hash table slots \(n \) is at least proportional to the number of elements in the table \(m \) or \(n = \mathcal{O}(m) \)
 - So that \(\alpha = n/m = \mathcal{O}(m)/m = \mathcal{O}(1) \)

Analysis of hashing with chaining

- **Some definitions:**
 - **Load factor** \(\alpha \): is the ratio of the number of stored elements \(n \) divided by the number of slots \(m \) in hash table \(T \) or \(\alpha = n/m \)

- **Simple uniform hashing**: is when any given element is equally likely to hash into any of the \(m \) slots, independently of where any other element has hashed to.
Analysis of hashing with chaining

- **Worst-case behaviour**:
 - All n keys hash to the same slot, this creates a list of length n
 - The worst-case time is therefore (terrible) $\Theta(n)$
 - Which is no better than if using one linked list for all elements, plus the time it takes to compute the hash function
 - Hash tables are **not** used for their worst-case performance

- **Theorem**: In a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time $\Theta(1+\alpha)$, under the assumption of simple uniform hashing.

- **Proof**: Under the assumption of simple uniform hashing, any key k not already stored in the table is equally likely to hash to any of the m slots. The expected time to search unsuccessfully for a key k is the expected time to search to the end of list $T[h(k)]$, which has expected length $= \alpha$. Thus, the expected number of elements examined in an unsuccessful search is α, and the total time required (including the time for computing $h(k)$) is $\Theta(1+\alpha)$.

- **Theorem**: In a hash table in which collisions are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.

- **Proof**: If the number of hash-table slots is at least proportional to the number of elements in the table, we have $n=O(m)$ and, consequently, $\alpha=n/m=O(m)/m=O(1)$. Thus, searching takes constant time on average. Since insertion takes $O(1)$ worst-case time and deletion takes $O(1)$ worst-case time when the lists are doubly linked, all dictionary operations can be supported in $O(1)$ time on average.
Hash functions

- The best possible hash function would hash n keys into m “buckets” with no more than $\lfloor n/m \rfloor$ keys per bucket. Such a function is called a perfect hash function.
- What is the big picture?
 - A hash function which maps an arbitrary key to an integer turns searching into array access, hence $O(1)$
 - To use a finite sized array means two different keys will be mapped to the same place. Thus we must have some way to handle collisions.
 - A good hash function must spread the keys uniformly, or else we have a linear search.

Example

- Suppose we wish to allocate a hash table, with collisions resolved by chaining, to hold roughly $n=2000$ character strings, where a character has 8 bits.
- We don’t mind examining an average of 3 elements in an unsuccessful search, so we allocate a hash table of size $m=701$.
- The number 701 is chosen because it is a prime near $2000/3$ but not near any power of 2.
- Treating each key k as an integer, our hash function would be:
 \[h(k) = k \mod 701 \]

Hash functions: The Division Method

- Map key k into one of m slots by taking the remainder of k divided by m.
 - We use the hash function
 \[h(k) = k \mod m \]
 - We avoid certain values of m, such as $m=2^p$ for binary k and $m=10^p$ for decimal k
 - We chose m as primes not close to 2^p.

Hash functions: The Multiplication Method

- Operates in two steps:
 - Multiply the key k by a constant A in the range $0 < A < 1$, and extract the fractional part of kA.
 - Multiply this value by m and take the floor of the result.
 - Resulting hash function is:
 \[h(k) = \lfloor m(kA \mod 1) \rfloor \]
 where $kA \mod 1$ returns the fractional part of kA, the same as $kA - \lfloor kA \rfloor$.
 - Advantage of the multiplication method is that the value of m is not critical. Typically chose it to be a power of 2.
Hash functions: The Multiplication Method

- Suppose that the word size of the machine is \(w \) bits and that \(k \) fits into a single word. We restrict \(A \) to be a fraction of the form \(s/2^w \), where \(s \) is an integer in the range \(0 < s < 2^w \).

- First multiply \(k \) by the \(w \)-bit integer \(s = A2^w \). The result is a \(2w \)-bit value \(r_12^w + r_0 \), where \(r_1 \) is the high-order word of the product and \(r_0 \) is the low-order word of the product. The desired \(p \)-bit hash values consist of the \(p \) most significant bits of \(r_0 \).

\[\begin{array}{c|c}
\text{w bits} & k \\
\hline
x & s = A2^w \\
\hline
r_1 & r_0 \\
\hline
\end{array} \]

\(h(k) \) — Extract \(p \) bits

Example

- Suppose we have \(k = 123456, p = 14, m = 2^{14} = 16384 \), and \(w = 32 \).

- Choose \(A \) to be the fraction of the form \(s/2^{32} \) that is closest to \((\sqrt{5} - 1)/2\) so that \(A = 2654435769/2^{32} \).

- Then \(ks = 32770602297664 = (76300*232) + 17612864 \), and so \(r_1 = 76300 \) and \(r_0 = 17612864 \).

- The 14 most significant bits of \(r_0 \) yields the value \(h(k) = 67 \).

Universal hashing

- The worst case scenario is when \(n \) keys all hash to the same slot. This requires a \(\Theta(n) \) retrieval time. Any fixed hash function is vulnerable to the possibility of the worst case. The only effective counter measure is to choose the hash function randomly in a way that is independent of the keys that are actually going to be stored. This method, known as universal hashing yields good performance on average.

\[\text{Let } H \text{ be a finite collection of hash functions so that} \]
\[\text{For every } h \in H, \text{ we have } h: U \rightarrow \{0, 1, \ldots, m-1\} \]

- This collection \(H \) is universal

- If for each pair of distinct keys \(x, y \in U \), the number of hash functions \(h \in H \) where \(h(x) = h(y) \) is \(|H|/m \)

- We interpret this to mean that:

 - Given hash function \(h \in H \) chosen randomly
 - The probability of a collision between \(x \) and \(y \) when \(x \neq y \) is \(1/m \)
 - This is exactly the probability of a collision of \(h(x) \) and \(h(y) \) are randomly chosen from \(\{0, 1, \ldots, m-1\} \)
Collision resolution

- Two approaches
 - Separate chaining
 - m much smaller than n
 - ~n/m keys per table position
 - Put keys that collide in a list
 - Need to search lists
 - Open addressing (linear probing, double hashing)
 - m much larger than n
 - Plenty of empty table slots
 - When a new key collides, find an empty slot
 - Complex collision patterns

Open Addressing

- To perform insertion using open addressing we **probe** the hash table to find an empty slot in which to put the key. Instead of being fixed in the order 0, 1, ..., m-1 (requiring Θ(n) time), the sequence of positions is probed depending upon the key being inserted.

Open Addressing

Advantages:
- Do not use pointers, which speed up addressing schemes, frees up space
 - Faster retrieval times
 - Reduces the number of collisions
- May store a larger table with more slots for the same memory
- Compute the sequence of slots to be examined

Open Addressing

- Extend the hash function to also include the probe number (starting from 0) as a second input.
 - h: U * {0, 1, ..., m-1} → {0, 1, ..., m-1}
- For open addressing, we require that for every key k, the **probe sequence**

 \[<h(k, 0), h(k, 1), ..., h(k, m-1)> \]

 be a permutation of \(<0, 1, ..., m-1>\), so that every hash-table position is eventually considered as a slot for a new key as the table fills up.
Pseudo code: insert

- Assume that the elements in the hash table T are keys with no satellite information; the key k is identical to the element containing key k. Each slot contains either a key or NIL (if slot is empty).

```
hash_insert(T, k)
i := 0
repeat j := h(k, i)
    if T[j] = NIL
        then T[j] := k
    else i := i+1
until i = m
error "hash table overflow"
```

search

- The algorithm for searching for key k probes the same sequence of slots that the insertion algorithm examined when key k was inserted. Therefore, the search can terminate (unsuccesfully) when it finds an empty slot, since k would have been inserted there and not later in its probe sequence. (this argument assumes that keys are not deleted from the hash table.) The procedure hash_search takes as input a hash table T and a key k, returning j if slot j is found to contain key k, or NIL of key k is not present in table T.

```
hash_search(T, k)
i := 0
repeat j := h(k, i)
    if T[j] = k
        then return j
    else i := i+1
until T[j] = NIL or i=m
return NIL
```

Pseudo code: search

deletion

- **Deletion** from an open-address hash table is **difficult**. When we delete a key from slot i, we cannot simply mark that slot as empty by storing NIL in it. Doing so might make it impossible to retrieve any key k during whose insertion we had probed slot i and found it occupied.

- Solution: mark the slot by storing in it the special value DELETED instead of NIL.
 → modify the procedure hash_insert to treat such a slot as empty so that a new key can be inserted.
 No modification of hash_search is needed, since it will pass over DELETED values while searching.

- When special value is used, search times no longer dependent on the load factor α, and for this reason chaining is more commonly selected as a collision resolution technique when keys must be deleted.
Open Addressing

- Assume: *uniform hashing* instead of *simple uniform hashing*.
 - The hash function in uniform hashing produces a hash sequence
 - Each key is equally likely to have any of m! permutations of \{0, 1, ..., m-1\} as its probe sequence
 - Deletion is difficult and a modification to hash_search is necessary to continue to search if a slot is marked deleted instead of NIL.
 - Chaining may be needed

Four techniques for computing probe sequences for open addressing

1. Sequential probing: \(h, h+1, h+2, h+3, \ldots\)
2. Linear probing: \(h, h+k, h+2k, h+3k, \ldots\)
3. Quadratic probing: \(h, h+1^2, h+2^2, h+3^2, \ldots\)
4. Double hashing: \(h(k,i) = (h_1(k) + ih_2(k)) \mod m\), where \(h_1\) and \(h_2\) are auxiliary hash functions.
 - All generate \(\langle h(k,0), h(k,1), \ldots, h(k, m-1)\rangle\) as a permutation of \(\{0, 1, \ldots, m-1\}\)
 - None can generate more than m2 different probe sequences as uniform hashing requires m! different probe sequences (permutations)
 - Double hashing has the greatest number and may give the best results

Analysis of Open Addressing

- **Theorem**: given an open-address hash table with load factor \(\alpha = n/m < 1\), the expected number of probes in an unsuccessful search is at most

 \[
 \frac{1}{1-\alpha}
 \]
 assuming uniform hashing

- **Corollary**: Inserting an element into an open-address hash table with load factor \(\alpha\) requires at most

 \[
 \frac{1}{1-\alpha}
 \]
 probes on average, assuming uniform hashing

- **Theorem**: Given an open-address hash table with load factor \(\alpha < 1\), the expected number of probes in a successful search is at most

 \[
 \frac{1}{\alpha} \ln \frac{\frac{1}{1-\alpha}}{\frac{1}{\alpha}}
 \]
 assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

- If the hash table is half full, then the expected number of probes is less than 3.38629. If it is ninety percent full, we have less than 3.66954 probes.