a) \(s = -a \pm j \)

\[\omega_d = 1 \text{ rad/sec} \]

Sampling theorem: \(\omega_s > 2\omega_d \)

\[\omega_s > 2 \text{ rad/sec} \]

b) Sample at six times per cycle of transient, or \(\omega_d \)

\[\omega_s = 6\omega_d \]

\[\omega_s = 6 \text{ rad/sec} \]

c) Range of values of \(a \) such that \(\omega_s = 6 \text{ rad/sec} \)

will undersample transient

\[\omega_d = \omega_n \sqrt{1-s^2} = 1 \]

\[s = \frac{a}{\sqrt{1+a^2}} \]

\[\omega_n = \sqrt{1+a^2} \]

from JVV 274, pick \(\frac{a}{\sqrt{1+a^2}} \) to be \(t \) of plant time constant (ie \(\frac{1}{a} \))

\[\omega_s < 10a \]

\[a > \frac{\omega_s}{10} \]

\[a > 0.6 \text{ rad/sec} \]

Figure on next page shows changes of step response with increasing \(a \).
Figure 1: The effect of increasing a on the step response of a system with poles at $s = -a \pm j$
Figure 2: (a) Original Signal Spectrum- 120 Hz. (b) Sampled Signal Spectrum- $\omega_s = 100$ Hz. Aliased Frequency at 20 Hz.

Figure 3: Original Sine Wave vs. Undersampled Sine Wave with Aliasing. The period of the aliased signal is about 0.05 sec, which corresponds to a frequency of 20 Hz.
%Code to Generate Bode of ZOH
low_freq = 1; %frequency range
high_freq = 100;
T = 0.1; %sampling time

w = logspace(log10(2*pi*low_freq), log10(2*pi*high_freq), 100);

%TF of ZOH
ZOH = (1-exp(-j.*w.*T))./(j.*w);
mag = 20*log10(abs(ZOH));
phase = (180/pi).*angle(ZOH);

%re-scale frequency from rad/sec to Hz
w = w/(2*pi);

%create Bode plot
figure(1)
subplot(2,1,1),semilogx(w,mag);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('Bode of ZOH');
subplot(2,1,2),semilogx(w,phase);
xlabel('Frequency (Hz)');
ylabel('Phase(deg)');

Figure 4: Bode Plot of Zero Order Hold. Note that the sampling frequency is 10 Hz, which corresponds to the first “dip” in the Bode magnitude plot.
Many students used a Pade approximation to graph the bode of the Zero Order Hold transfer function. Since the problem allowed you to use Matlab, a more accurate and precise graph would have been obtained if a higher-order Pade approximation was used.

Figure 5: ZOH using Pade approximation for e^{-sT}.

Figure 6: ZOH using Pade approximation for e^{-sT}.
% Define sample space (1:25)
samples = linspace(1,25,25);

% Define parameters
a = [0.5 -0.5 1.2 -1.2];
b = [0.0 0.0 -0.6 -0.6];
c = [0.5 1.5 0.4 2.8];

% Unit step input
u = linspace(1,1,25);

% for each set of parameters
for m=1:4
 % Initial conditions are y_{-1} = 0; y_{0} = 0;
 % Setup initial values (Matlab vectors do not have non-positive indices)
 y(1) = c(m)*u(1);
 y(2) = a(m)*y(1) + c(m)*u(2);

 % for the remaining samples,
 % calculate step response using difference equation
 for k=3:25
 y(k) = a(m)*y(k-1) + b(m)*y(k-2) + c(m)*u(k);
 end

 % setup figure
 figure(1);
 % plot step response with discrete samples
 subplot(2,2,m), stem(samples,y);
 xlabel('Sample');
 ylabel('Step Response');
 title(['Step Response for ay_{k-1} + by_{k-2} + cu_k, with a = ',num2str(a(m)),', b = ',num2str(b(m)),', c = ',num2str(c(m))]);
end
Figure 7: Step Responses with various a, b, and c parameters.