Solution by Dynamic Programming

Principle of optimality:

Any portion of an optimal trajectory is an optimal trajectory.

Optimal "cost-to-go" is

\[
J^*(x(t), t) = \min_u \int_t^T \left[x^T(t) Q(t) x(t) + u^T(t) R(t) u(t) \right] dt
\]

\[
= \min_u \left(\left[x(t) Q(t) x(t) + u^T(t) R(t) u(t) \right] + J^* (x(t+dt), t+dt) \right)
\]

where

\[
x(t+dt) = x(t) + \left[A(t) x(t) + B(t) u(t) \right] dt
\]
If we knew $J^*(x, t+dt)$ for all x, can choose best u at time t.

Let's guess that $J^*(x, t) = x^T P(t) x$ and need to find!

(Because J is quadratic)

Then

$$x^T(t) P(t) x(t) =$$

$$\min_u \left\{ \left[x^T(t) Q(t) x(t) + u^T(t) R(t) u(t) \right] dt + \frac{1}{2} \left(x(t) + \left[A(t) x(t) + B(t) u(t) \right] dt \right)^T P(t + dt) \left(x(t) + \left[A(t) x(t) + B(t) u(t) \right] dt \right) \right\}$$

Keep only $O(1)$ and $O(dt)$ terms:

$$x^T P x =$$

$$\min_u \left\{ \left[x^T Q x + u^T R u \right] dt + x^T P x + x^T P x dt \right\}$$

$$+ x^T P (A x + B u) dt + (A x + B u)^T P x dt$$

To minimize,

$$\frac{d}{du} \{ \cdot \} = 0 = \left(2 R u + 2 B^T P x \right) dt$$
\[u = -R^{-1}B^TPx \]

is the optimum control (if form of \(J \) is correct)

\[u(t) = -R^{-1}(t)B^T(t)P(t)x(t) = -F(t)x(t) \]

\[F(t) = R^{-1}(t)B^T(t)P(t) \]

So,

\[\dot{x}^TPx = (x^TQx + x^TPBR^{-1}R^{-1}B^TPx)dt + x^TPx \]
\[+ x^TPdx + x^TP(Ax - BR^{-1}B^TPx)dt \]
\[+ (Ax - BR^{-1}B^TPx)^TPxdt \]

\[0 = x^T(G + PBR^{-1}B^TP + \dot{P} + PA - PBR^{-1}B^TP \]
\[+ ATP - PBR^{-1}B^TP)x \]

Therefore, \(P(t) \) satisfies

\[-\dot{P}(t) = A^T(t)P(t) + P(t)A(t) + Q(t) - P(t)B(t)R^{-1}B(t)P(t) \]

"Riccati Equation"

Integrate backwards in time. Final condition:

\[P(T) = 0 \]
The steady-state solution

In many cases:

- \(T = \infty \) (or \(T \) large)
- \(A, B, Q, R \) constant

In this case, expect \(P(t) \to \text{const. as} \quad T-t \to \infty \).

If \(P(t) \) reaches a steady state, \(P \) satisfies

the "algebraic Riccati equation" (ARE)

\[
0 = A^TP + PA + Q - PBR^{-1}B^TP
\]

(like a quadratic eq'n)

\(\Rightarrow \) more than 1 solution

and the optimal gain is

\(F = R^{-1}B^TP \)

Theorem: If \((A,B) \) is stabilizable and \((A, Q^{1/2}) \)

is detectable,

\[
\lim_{T-t \to \infty} P(t) = \overline{P} \quad \text{exists},
\]

which is the unique solution of the ARE

for which \(F \succ 0 \).
The Steady-State Solution

In many cases:

- $T = \infty$ (or T large)
- A, B, Q, R constant

In this case, expect $P(t) \to \text{const.}$ as $T-t \to \infty$.

If $P(t)$ reaches a steady state, P satisfies the "algebraic Riccati equation" (ARE)

$$0 = A^T P + P A + Q - P B R^{-1} B^T P$$

Like a quadratic eq'n, \Rightarrow more than 1 solution

and the optimal gain is

$$F = R^{-1} B^T P$$

Theorem: If (A, B) is stabilizable and $(A, Q^{1/2})$ is detectable,

$$\lim_{T-t \to \infty} P(t) = \bar{P} \text{ exists,}$$

which is the unique solution of the ARE for which $P \succ 0$.

Note: Didn't go well.

See Lecture 23.
Solving the Riccati Equation

Riccati equation is intimately related to Hamiltonian system

\[
\begin{pmatrix}
\dot{x} \\
\dot{p}
\end{pmatrix} =
\begin{pmatrix}
A & -BR^{-1}B^T \\
-Q & -A^T
\end{pmatrix}
\begin{pmatrix}
x \\
p
\end{pmatrix}
\]

Why? Hamiltonian matrix, H.

1) Could solve optimal control problem by calculus of variations. p is the Lagrange multiplier, and can show that $\dot{p} = P \dot{x}$

2) Define $p = Px$, and see what happens.

\[
\dot{x} = Ax + Bu = Ax - BFx
\]

\[
= Ax - BR^{-1}B^TPx
\]

\[
\dot{x} = Ax - BR^{-1}B^TPp
\]

\[
\dot{p} = \frac{d}{dt}(Px) = \dot{p}x + P \dot{x}
\]

\[
= -(A^TP + PA + Q - PBR^{-1}B^TP)x + P(Ax + Bx)
\]

\[
\dot{p} = -Qx - A^TPx = -Qx - A^TPp
\]
\[
\begin{pmatrix}
\dot{x} \\
\phi
\end{pmatrix} =
\begin{pmatrix}
A & -BR^{-1}B^T \\
-Q & -A^T
\end{pmatrix}
\begin{pmatrix}
\chi \\
P
\end{pmatrix}
\]

Riccati equation \implies Hamiltonian.

How do we go the other way?

We can show that \(\Phi_H(s) = \text{det}(sI - H) = \Phi_H(-s) \)

\(\implies \) if \(\lambda \) is an eigenvalue of \(H \), so is \(-\lambda \).

Proof Take \(T = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \). Then

\[
TH^{-1}T^{-1} = \begin{bmatrix}
-A^T & Q \\
+BR^{-1}B^T & A
\end{bmatrix} = -H^T
\]

\(\implies \lambda(H) = \lambda(TH^{-1}T^{-1}) = \lambda(-H^T) = -\lambda(H) = -\lambda(H) \)

So half the poles of \(H \) are stable. Those must correspond to stable regulator poles.

So,

1) Find the eigenvalues, eigenvectors of \(H \).
2) Keep only the stable ones.
3) Let \(\Delta = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n) \)