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Abstract. A temporal reasoning problem can often be naturally characterized as
a collection of constraints with associated local preferences for times that make
up the admissible values for those constraints. Globally preferred solutions to
such problems emerge as a result of well-defined operations that compose and or-
der temporal assignments. The overall objective of this work is a characterization
of different notions of global temporal preference within atemporal constraint
reasoning framework, and the identification of tractable sub-classes of temporal
reasoning problems incorporating these notions. This paper extends previous re-
sults by refining the class of useful notions of global temporal preference that are
associated with problems that admit of tractable solution techniques. This paper
also resolves the hitherto unanswered question of whether the solutions that are
globally preferred from autilitarian criterion for global preference can be found
tractably. A technique is described for identifying and representing the entire set
of utilitarian-optimal solutions to a temporal problem with preferences.

1 Introduction

Many temporal reasoning problems can be naturally characterized as collections of con-
straints with associated local preferences for times that make up the admissible values
for those constraints. For example, one class of vehicle routing problems [14] consists
of constraints on requested service pick-up or delivery that allow flexibility in temporal
assignments around a specified fixed time; solutions with assignments that deviate from
this time are considered feasible, but may incur a penalty. Similarly, dynamic schedul-
ing problems [12], whose constraints may change over time, thus potentially requiring
solution revision, often induce preferences for revised solutions that deviate minimally
from the original schedule.

To effectively solve such problems, it is necessary to be able to order the space of as-
signments to times based on some notion of global preference, and to have a mechanism
to guide the search for solutions that are globally preferred. Such a framework arises as
a simple generalization of the Simple Temporal Problem (STP) [5], in which temporal



constraints are associated with a local preference function that maps admissible times
into values; the result is calledSimple Temporal Problem with Preferences (STPP)[9].
Globally optimal solutions to STPPs emerge as a result of well-defined operations that
compose and order partial solutions.

Different concepts of composition and comparison result indifferent characteriza-
tions of global optimality. Past work has introduced three notions of global preference:
Weakest Link (maximize the least preferred time), Pareto, and utilitarian. Much of the
work to date has been motivated by the overall goal of finding tractable solutions to
temporal optimization problems with realistic global preference criteria. In particular,
NASA is motivated to create systems that will automaticallyfind optimally preferred
solutions to problems in the rover planning domain [3], where the goal is to devise plans
for investigating a number of scientifically promising science targets.

In addition to reviewing the STPP framework (section 2), this paper extends previ-
ous results motivated by the overall goal of identifying useful notions of global pref-
erence that correspond to problems that can be solved tractably. First, we introduce a
new category of global optimality calledstratified egalitarianoptimality, and prove that
it precisely characterizes the subset of Pareto optimal solutions returned by a tractable
technique called WLO+ introduced previously (section 3). Second, we provide an affir-
mative answer to the question of whether the utilitarian optimal solutions to temporal
preference problems can be also found tractably within thisframework. A technique is
described for identifying and representing the whole set ofutilitarian-optimal solutions
to a temporal reasoning problem with preferences (section 4). This paper closes with a
summary of experiments (section 5) and a discussion of future work.

2 Simple Temporal Problems with Preferences

A temporal constraintdetermines a restriction on the distance between an arbitrary pair
of distinct events. In [9], asoft temporal constraintbetween eventsi andj is defined as
a pair〈I, fij〉, whereI is a set of intervals{[a, b], a ≤ b} andfij is a local preference
functionfrom

⋃

I to a setA of admissible preference values. For the purposes of this
paper, we assume the values inA are totally ordered, and thatA contains designated
values for minimum and maximum preferences.

When I is a single interval, a set of soft constraints defines aSimple Temporal
Problem with Preferences(STPP), a generalization of Simple Temporal Problems [5].
An STPP can be depicted as a pair(V, C) whereV is a set of variables standing for
temporal events or timepoints, andC = {〈[aij , bij ], fij〉} is a set of soft constraints
defined overV . An STPP, like an STP, can be organized as a network of variables
representing events, and links labeled with constraint information. Asolution to an
STPP is a complete assignment to all the variables that satisfies the temporal constraints.

A soft temporal constraint〈[aij , bij ], fij〉 results from defining a preference func-
tion fij over an interval[aij , bij ]. Clearly, removing the preference functions from the
set of constraints making up an STPPP results in an STP; we call this the STPunder-
lying P.

We define apreference vectorof all the local preference values associated with a set
F = {fij} of local preference functions and a solutionS. Formally, letfij(S) refer to



Fig. 1. The STPP for a Rover Science Planning Problem (T is any timepoint)

the preference value assigned byfij to the temporal value thatS assigns to the distance
between eventsi andj, and let

UF (S) = 〈f12(S), f13(S), . . . f1n(S),
f23(S), . . . f2n(S),

. . .
...
fn−1,n(S)〉

be thepreference vectorassociated withF and S. In what follows the context will
permit us to writeUS instead ofUF (S) without ambiguity, andUk

S will refer to thekth

preference value ofUS .
For an example of an STPP, consider a simple Mars rover planning problem, illus-

trated in Figure 1. The rover has a sensing instrument and a CPU. There are two sensing
events, of durations 3 time units and 1 time unit (indicated in the figure by the pairs of
nodes labeled inss1, inse

1 and inss2, inse
2 respectively). The eventT depicts a reference

time point (sometimes referred to as “the beginning of time”) that allows for constraints
to be specified on the start times for events. There is a hard temporal constraint that the
CPU be on while the instrument is on, as well as a soft constraint that the CPU should
be on as little as possible, to conserve power. This constraint is expressed in the STPP
as a function from temporal values indicating the possible durations that the CPU is on,
to preference values. For simplicity, we assume that the preference functionmin on
the CPU duration constraints is the negated identity function; i.e.,minij(t) = −t; thus
higher preference values, i.e. shorter durations, are preferred.

A solution to an STPP has aglobal preference value, obtained by combining the
local preference values using operations for composition and comparison. Optimal so-
lutions to an STPP are those solutions which have the best preference value in terms of
the ordering induced by the selected comparison operator. Solving STPPs for globally
preferred assignments has been shown to be tractable, undercertain assumptions about
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Fig. 2. “Chopping” a semi-convex function.

the “shape” of the local preference functions and about the operations used to compose
and compare solutions.

For example, first consider a class of local preference functions that includes any
function such that if one draws a horizontal line anywhere inthe Cartesian plane of
the graph of the function, the set ofX such thatf(X) is not below the line forms an
interval. This class ofsemi-convexfunctions includes linear, convex, and also some step
functions.

Second, consider an STPP solver based on the notion ofWeakest Link Optimiza-
tion (WLO). This framework consists of an operator for composingpreference values
in A based on the minimal value of the component values. This framework induces
an evaluation of solutions based on a single, “weakest link”value. Given preference
vectorsUS andUS′ corresponding to distinct solutionsS andS′, we will say thatS
is Weakest-Link-Optimal (WLO) -preferredto S′, or S′ is WLO-dominatedby S, if
min(US′) < min(US), wheremin(U) returns the minimum value of vectorU . WLO-
optimal solutionsare those to which no other solutions are WLO-preferred.

STPPs with semi-convex preference functions for WLO-optimal solutions can be
solved tractably by a process called thechop method. This method is based on the act
of “chopping” a preference function (Figure 2). Semi-convexity implies that the set of
times for which the preference function returns a value above a selected chop point
forms a convex interval; call this interval thechop-induced constraint. For a set of pref-
erence functions in an STPP, chopping all of them at the same preference value induces
a Simple Temporal Problem, namely, of finding a set of assignments that satisfies all the
chop-induced constraints. A binary search will return the largest preference valuevopt

for which a solution to the induced STP exists; it can been shown that the solutions at
vopt areWLO-optimal.

Because the chop method returns the solution to an STP, its output is aflexible
temporal plan, i.e., a set of solutions that have the same WLO-optimal value. Plan flex-
ibility is often considered important in ensuring robustness in an execution environment
that is uncertain [11]. Nonetheless, the WLO criterion for globally preferred solutions
has the disadvantage of being “myopic”, in the sense that it bases its evaluation on a



single value. This feature can be shown to limit its usefulness in solving real temporal
planning problems. The rover example in Figure 1 can be used to illustrate this myopia.
Because the CPU must be on at least as long as the sensing events, any globally pre-
ferred solution using WLO has preference value -3. The set ofsolutions that have the
WLO-optimal value includes solutions in which the CPU duration for the second sens-
ing event varies from 1 to 3 time units (again, since WLO basesits evaluation solely
on the least preferred value). The fact that WLO is unable to discriminate between the
global values of these solutions, despite the fact that the one with 1 time unit is obvi-
ously preferable to the others, can be clearly viewed as a limitation.

Less myopic global preference criteria can be defined. For example, we can say that
S′ Pareto-dominatesS if for eachj, U j

S ≤ U j
S′ and for somek, Uk

S < Uk
S′ . ThePareto

optimal setof solutions is the set of non-Pareto-dominated solutions.Similarly, we can
say thatS′ utilitarian-dominatesS if

∑

j U j
S <

∑

j U j
S′ , and theutilitarian optimal set

of solutions is the set of non-utilitarian-dominated solutions.
In a previous result [10], it was shown that a restricted formof Pareto-optimality

can be achieved by an iterative application of the chop method. The intuition is that
if a constraint solver could “ignore” the links that contribute the weakest link values
(i.e. the values that determined the global solution evaluation), then it could eventually
recognize solutions that dominate others in the Pareto sense. The links to be ignored are
calledweakest link constraints: formally, they comprise all links in which the optimal
value for the preference function associated with the constraint is the same as the WLO
value for the global solution. Formalizing the process of “ignoring” weakest link values
is a two-step process of committing the flexible solution to consist of the interval of
optimal temporal values, and reinforcing this commitment by resetting their preferences
to a single, “best” value. Formally, the process consists of:

– squeezing the temporal domain to include all and only those values which are
WLO-optimally preferred; and

– replacing the preference function by one that assigns the highest (most preferred)
value to each element in the new domain.

The first step ensures that only the best temporal values are part of any solution, and the
second step allows WLO to be re-applied to eliminate Pareto-dominated solutions from
the remaining solution space. The resulting algorithm, called WLO+ returns, in poly-
nomial time, a Simple Temporal Problem (STP) whose solutions are a nonempty subset
of the WLO-optimal, Pareto-optimal solutions to an STPP. The algorithm WLO+ from
[10] is reproduced in Figure 3 for completeness. WhereC is a set of soft constraints, the
STPP(V, CP ) is solved (step 3) using the chop approach. In step 5, we depict the soft
constraint that results from the two-step process described above as〈[aopt, bopt], fbest〉,
where[aopt, bopt] is the interval of temporal values that are optimally preferred, and
fbest is the preference function that returns the most preferred preference value for any
input value. Notice that the run time of WLO+ isO(|C|) times the time it takes to
executeSolve(V, CP ), which is a polynomial.

WLO+, applied to the rover example in Figure 1, finds a Pareto optimal solution in
two iterations of the while loop. In the first iteration, the weakest link is that between
the start and end of the first CPU event. WLO+ deletes this linkand replaces it with
one with the interval[3, 3] and the local preference functionfbest. This new STPP is



Inputs: an STPPP = (V, C)
Output:
An STP(V, CP ) whose solutions are Pareto optimal forP .
(1) CP = C

(2) while there are weakest link soft constraints inCP do
(3) Solve(V, CP )
(4) Delete all weakest link soft constraints fromCP

(5) For each deleted constraint〈[a, b], f〉,
(6) add〈[aopt, bopt], fbest〉 to CP

(7) Return(V, CP )

Fig. 3. STPP solver WLO+ returns a solution in the Pareto optimal setof solutions

then solved on the second iteration, whereby the WLO-optimal solution with the CPU
duration of 1 is generated. The solution to this STPP is a Pareto-optimal solution to the
original problem.

WLO+ was a positive result in the search for tractable methods for finding glob-
ally preferred solutions based on less myopic criteria for global preference than WLO-
optimality. We now proceed to refine and expand these resultsin two ways: first by
offering a more concise characterization of the class of solution returned by WLO+,
and secondly, by showing how restricted classes of STPP witha utilitarian criterion for
global preference can be solved tractably.

3 WLO+ and Stratified Egalitarianism

As noted in the previous section, the set of solutions returned by running WLO+ on an
STPP is a subset of the set of Pareto Optimal Solutions for that problem. In this section,
we present a concise description of this set. By doing so, it is revealed that WLO+ is
based on a useful concept of global preference.

We introduce a concept of global preference called Stratified Egalitarianism (SE).
Consider again two preference vectorsUS andUS′ associated with solutionsS andS′.
We will sayS′ SE-dominatesS at preference level (or stratum)x if:

– U i
S < x impliesU i

S′ ≥ U i
S .

– There exists ani such thatU i
S < x andU i

S′ > U i
S .

– U i
S ≥ x impliesU i

S′ ≥ x.

We say thatS′ SE-dominatesS (without further qualification) if there is any levelx
such thatS′ SE-dominatesS atx. It is not hard to see that the SE-dominance relation is
antisymmetric and transitive1, thus inducing a partial ordering of solutions. A solution
S′ will be said to be SE-optimal if it is not SE-dominated. Note that if a solutionS′

Pareto-dominatesS, thenS′ SE-dominatesS at the “highest” level of theUS′ vector.
Thus, SE-optimality implies Pareto optimality. Furthermore, if S′ dominatesS in the

1 The proof makes use of the requirement that the preference values be totally ordered.



WLO ordering, thenS′ SE-dominatesS at the “lowest” level of theUS′ vector. Thus,
SE-optimality also implies WLO optimality.

Using an economic metaphor to ground intuition,x represents a sort ofpoverty
line, and a “policy”S′ has a better overall quality thanS if some members below the
poverty line inS are improved inS′, even if some of those above the poverty line in
S are made worse off inS′ (as long as they do not drop below the poverty line). This
metaphor suggests that SE-optimality could be a reasonablecriterion for specifying
globally preferred solutions.

Economists have considered some notions of egalitarian optimality, but have re-
jected them as being ”non-rational” because they do not imply Pareto optimality. Note
that SE-optimality does, however, meet this rationality criterion, but we are unaware of
any consideration of the SE preference ordering in the economics literature.

We now prove that the WLO+ algorithm finds exactly the SE-optimal solutions.

Theorem 1. The set of solutions returned by WLO+ is precisely the set of SE-optimal
solutions.

Proof. Consider a solutionS not returned by WLO+, i.e., one that is eliminated at some
iteration of the WLO+ algorithm; let the optimal value (i.e., value of the weakest link)
of the set of solutions bev at that iteration. LetS′ be any survivor at that iteration.
There must be some linki such thatU i

S < v (otherwiseS wouldn’t be eliminated).
But U i

S′ ≥ v sinceS′ survives. Thus,U i
S′ > U i

S . Note also thatU j
S′ ≥ v for all links

j. Thus, for any valuek such thatUk
S ≤ v, we haveUk

S′ ≥ Uk
S . It follows thatS is

dominated at stratumv.
Conversely, supposeS is dominated at some stratumv but, for the sake of contradic-

tion, supposeS is not excluded from the set of solutions returned by WLO+. From the
assumption thatS is dominated at stratumv, there exists anS′ andi such thatv > U i

S

andU i
S′ > U i

S , and for anyj, U j
S′ ≤ v impliesU j

S′ ≥ U j
S. During the execution of the

WLO+ algorithm, an increasing sequenceV of preference valuesv1, v2, . . . , vN = 1
(where 1 is the “best” preference value) is created, representing the WLO optimal val-
ues at each iteration. Clearly,U i

S < 1 (where 1 is the “best” preference value), so one of
theV s must exceedU i

S . SupposevK is the smallest element inV such thatvK > U i
S .

Note thatS would be removed at this iteration, as a result of its being not WLO optimal,
unless the preference function for linki had been reset at an iterationJ < K. But that
function would get reset only ifi was a weakest link atJ . ThenvJ ≤ U i

S sinceJ < K,
andvK is the smallestV such thatvK > U i

S . Note however, that for all linksj, either
U j

S′ ≥ v > vJ or U j
S′ ≥ U i

S. Thus,S′ would have survived to this iteration ifS had.
However,U i

S′ > U i
S ≥ vJ , which contradicts the fact thati is a weakest link.2

3.1 SE versus Leximin

Another global optimality criterion discussed in [8]) is leximin optimality. The leximin
ordering compares the minimum value of two preference vectors, then the second low-
est and so on, until it finds a difference; the ordering of the first such mismatch deter-
mines the leximin ordering of the vectors. It is not difficultto show that SE-dominance
implies leximin-dominance, but the converse is not true in general. For example, the



preference vector〈5, 1〉 dominates〈1, 3〉 in the leximin ordering but not in the SE or-
dering. (The SE ordering cares about individuals but leximin does not.)

Nevertheless, it is possible to prove a partial converse as follows.

Theorem 2. If x > y in leximin-order, thenz > y in SE-order, wherex, y, andz are
preference vectors, andz = (x + y)/2 is the average ofx andy.

Proof. Note that the coordinate ordering is arbitrary, so we can assume without loss of
generality thaty is sorted in increasing order. (This simplifies the notationbelow.)

Supposex > y in leximin-order. Letk = min{j | xj 6= yj}. Note that forj ≥ k,
we havexj ≥ yk since otherwisey > x in leximin-order instead of vice versa. Also
yj ≥ yk for j ≥ k, sincey is sorted. Thus, forj ≥ k, we havezj ≥ yk. It is also easy
to see that ifxj andyj are unequal, which can only happen forj ≥ k, then one of them
must exceedyk, sozj > yk in this case. It follows that eitherxj = yj or zj > yk. In
particular,zk > yk.

Now let v = min{zj | zj > yk}. (Note thatv is well-defined sincej = k satisfies
the condition.) We claim thatz >SE y at levelv. To see this, note from the previous
paragraph that for allj eitherxj = yj, in which casezj = yj , or zj > yk. In the latter
case,zj ≥ v by the definition ofv. Since alsozk > yk andv > yk, this establishes the
result.

2

It is well-known that the solutions to an STPP form a convex set, so if S andS′ are
solutions, then(S + S′)/2 is also a solution. Furthermore, if the preference functions
are convex, thenU j

(S+S′)/2 ≥ (U j
S + U j

S′)/2 for all j. It follows that if a solutionS
is leximin-dominated by a solutionS′, then it is SE-dominated by(S + S′)/2, which
is also a solution. Thus, in the setting of an STPP with convexpreference functions,
leximin-optimality coincides with SE-optimality. (However, our previous remarks show
they are not equivalent in a more general setting.)

4 Utilitarian Optimality

Perhaps the most natural criterion for global optimality isutilitarian, where the global
value of a solution is the sum of the local values. In this section, we consider applying a
utilitarian global optimality criterion to the temporal preference problem. We show that
determining the set of all utilitarian optimal solutions asan STP is tractable in the case
where all the preference functions are convex and piecewiselinear. Piecewise linear
preference functions characterize soft constraints in many real scheduling problems; for
example, in vehicle routing (where the best solutions are close to desired start times)
and in dynamic rescheduling (where the goal is to find solutions that minimally perturb
the original schedule).

We first consider the problem of finding asingleutilitarian optimal solution. (Some
constructions related to this have previously appeared in the literature [1, 12]. Our main
contribution in this respect will be what follows, where thewhole set of solutions is
determined as an STP.)

Consider an STPP with preferencesF = {fij}, and assume that the goal is to find
a utilitarian optimal solutionS, i.e. where

∑

ij fij(S) is optimal. Suppose eachfij is



Fig. 4. Convex Piecewise Linear Function

convex and piecewise linear. Thus, there is a sequence of intersecting line segments
that make upfij . We will denote the individual linear functions corresponding to the
segments byf1

ij , f
2
ij , . . . , f

mij

ij , as illustrated in Figure 4.
In this case, we will show that the utilitarian optimizationproblem can be reduced

to a Linear Programming Problem (LPP), which is known to be solvable in polynomial
time by Karmarkar’s Algorithm [4]. This result generalizesthe observation in [9] that
STPPs with linear preference functions can be mapped into LPPs.

Since thef ’s are convex, notice thaty ≤ fij(x) if and only if y ≤ f1
ij(x) ∧ y ≤

f2
ij(x)∧. . . y ≤ f

mij

ij (x). (See Figure 4.) For the LPP, we introduce an auxiliary variable
Zij for eachfij , together withmij additional linear constraints of the form

Zij ≤ fk
ij(S).

We also introduce a set of variablesX = {X1, X2, . . . Xn} for the nodes in the STP.
Note thatXi andXj , respectively, correspond to the start and end points of theedge
associated withfij . An interval[pij , qij ] denotes the domain offij .

The complete LPP can now be formulated as follows. The indices are assumed to
range over their available values, which should be clear from the above discussion. Note
thatij in {fij} and{Zij} range over the edges associated with preferences. This could
be a small subset of the entire edges in real applications. Finally, we introduce a variable
Sij for each temporal distance assignment in a solution.

– Variables:{Xi}, {Sij}, and{Zij}.
– Constraints (conjunctive over all values of the indices):

1. Sij = Xj − Xi

2. pij ≤ Sij ≤ qij

3. Zij ≤ fk
ij(S)

– Objective Function:
∑

ij Zij

Theorem 3. The solution to the LPP as formulated above provides a utilitarian optimal
solution to the STPP.



Proof. Consider the candidate STPP solutionS obtained from the values of the{Xi}
variables in an optimal solution of the LPP. Clearly, the constraints (items 1 and 2)
guarantee thatS satisfies the STP underlying the STPP. It only remains to showthat
it is optimal in the utilitarian ordering for the STPP. From the constraints in item 3,
we see thatZij ≤ fk

ij(S) for each linear componentk and henceZij ≤ fij(S). We
claim thatZij = fij(S). To see this, note that theZij variables can be varied inde-
pendently without affecting the constraints in items 1 and 2. If Zij < fij(S), then the
objective function can be increased, without violating anyconstraints, by increasingZij

to fij(S), which contradicts the assumption that the solution is already optimal. Thus,
Zij = fij(S) for eachij, and so

∑

ij Zij =
∑

ij fij(S)
Suppose now there was a better solutionS′ for the STPP in terms of the utilitarian

ordering. Then
∑

ij fij(S
′) >

∑

ij fij(S) =
∑

ij Zij . Observe that we can now for-
mulate a better solution to the LPP based onS′ (where we setZ ′

ij = fij(S
′)), which is

a contradiction. Thus, theS obtained from the LPP is also optimal for the STPP.2

The previous result shows that, for an STPP with preference functions that are con-
vex and piecewise linear, a single solution can be obtained by mapping the problem into
an LPP. An interesting question presents itself: is there a compact representation for the
entireset of the utilitarian optimal solutions to the STPP? In particular, can the set be
represented as the solutions to an STP, as can the corresponding set for SE-optimality?

This question is answered in the affirmative by the theorem that follows. As it turns
out, whereas solving a primal LPP problem gives a single solution, solving instead
a dual LPP problem [13] provides the entire set of solutions. Specifically, the dual
solution is used to find additional temporal constraints on the STP that underlies the
STPP so that its solutions are all and only the optimal solutions to the STPP.

Theorem 4. Suppose an STPPP has preference functions that are convex and piece-
wise linear. Then the set of all utilitarian optimal solutions can be represented as the
solutions to an STP that is formed by adding constraints to the STP underlyingP.

Proof. We map the STPP into an LPP in the same way as before. Note that we can apply
certain results from linear programming theory [13, page 101]: the set of solutions to an
LPP coincides with one of the faces of the (hyper) polyhedronthat defines the feasible
region.2 Note also that the faces can be obtained by changing some of the inequalities to
equalities. In a well-known result, the indices of the constraints that change to equalities
can be obtained by solving thedualof the original LPP.

There are two kinds of inequalities in the LPP that are not already equalities: edge
bounds and preference value bounds. In the former case, changing an edge bound to
an equality instead of an inequality can be accomplished by adding a simple temporal
constraint. In the latter case, an inequality of the formZij ≤ fk

ij(S) is changed to the
equalityZij = fk

ij(S). This change can be accomplished by restricting the solution
to be within the bounds of thefk

ij “piece” of the piecewise linear preference function,
which can also be performed through adding a simple temporalconstraint. Figure 5
demonstrates this process. A piecewise-linear function with three pieces is displayed.
One of the pieces,f , has become part of an equality preference constraintZ = f(X) as

2 In this context, the termface includes vertices, edges, and higher-dimensional bounding sur-
faces of the polyhedron, as well as the whole polyhedron.



the result of solving the dual LPP. The consequence of this update is to add the temporal
bound[a, b] to the STP underlying the original STPP. This bound limits the duration of
the edge to be that of the piece of the original preference function that has become an
equality. We make the following claims.

1. No temporal value outside the interval[a, b] can be part of an optimal solution; and
2. Every solution of the restricted STP is an optimal solution of the original STPP.

The first claim is obvious from the figure: if there are solutions which contain temporal
values outside the bound, they must receive a preference value less than the linear func-
tion of the selected piece (by the convexity of the preference function); hence they are
not optimal, since this piece is satisfied with equality in all the optimal solutions.

To see that the second claim is true, consider any solutionS of the restricted STP.
We can extend this to a feasible solution of the (primal) LPP by settingZij = fij(S)
for eachi and j. Note thatfij(S) = fk

ij(S) for each preference edge that has been
restricted to ak piece as discussed above, soZij = fk

ij(S) will be satisfied in these
cases. Thus, the extended solution is in the optimal face of the LPP, and henceS is
optimal for the STPP.

Thus, from the information provided by the dual solution to the LPP, a new STP is
formed whose solutions are all and only the utilitarian-optimal solutions of the original
STPP.

2

a b

Z=f(X)

Fig. 5. Squeezing a Temporal Bound by Adding a Preference Equality

This theorem suggests an approach to transforming an STPP into an STP all of
whose solutions are utilitarian-optimal for the original problem. First, formulate an LPP
as described in the theorem. Second, solve the dual of the LPPto identify the LPP
constraints that change from being inequalities to being equalities. Third, map these
changes to the STP that underlies the original STPP, again asdescribed above.

As an example, consider the STPP shown in figure 6 (left) with nodesA, B, andC
and edgesx1, x2, andx3 for which the domains are[0, 10]. The preference functionf
on bothx1 andx2 is given by

f(x) =

{

x for 0 ≤ x ≤ 6
6 for 6 ≤ x ≤ 10



 ff

x3

x2x1
0 10100

100

B

CA

Primal Variables
x1 x2 x3 z1 z2

Dual Variables Primal Constraints

y1 x1 ≤ 10
y2 x2 ≤ 10
y3 x3 ≤ 10
y4 -x1 +z1 ≤ 0
y5 z1 ≤ 6
y6 -x2 +z2≤ 0
y7 z2 ≤ 6
y8 x1 +x2 -x3 ≤ 0
y9 -x1 -x2 +x3 ≤ 0

Fig. 6. STPP to LPP example. The primal objective ismax : (z1 + z2) while the dual objective
is min : (10y1 + 10y2 + 10y3 + 6y5 + 6y7).

Note that this is convex and piecewise-linear with 2 pieces.There is no preference (or
constant preference) forx3.

We can obtain a single optimal solution to this STPP by solving an LPP:

maximizecX : AX ≤ b

whereX = (x1, x2, x3, z1, z2) andz1 andz2 are the preferences forx1 andx2 re-
spectively. This is shown in more detail on the right of figure6.3 Each optimal solution
has a value of 10 for the objective. However, our goal is to findthe additional constraints
needed to define the STP that characterizesall the optimal solutions. For this, we need
only find a single solution to the dual problem. The dual solution has{y3, y4, y6, y8}
as the variables with non-zero values. As a consequence of the Duality Theorem, we
conclude that the inequalities corresponding toy3, y4, y6, andy8, shown in figure 6,
are satisfied as equalities. From (x3 = 10) we conclude thatx3 satisfies [10,10]. From
(−x1 + z1 = 0) we conclude thatx1 is restricted to [0,6] (a single piece of the prefer-
ence function), and similarly forx2 using (−x2 + z2 = 0). By computing the minimal
STP, we can further restrictx1 andx2 to [4, 6].

5 Experimental Results

Experiments were conducted comparing the performance of WLO+ with a Simplex
LP solver. As noted above, WLO+ generates flexible plans in polynomial (worse-case
cubic) time that are SE-optimal. The simplex algorithm applied to temporal planning
generates fixed utilitarian-optimal plans and is known to perform well in practice but
takes exponential time in the worst case. In these experiments, we were interested in
comparing both the run-time performance of the two approaches, as well as the quality
of WLO+ solutions with respect to an utilitarian evaluation, on a variety of randomly

3 For expository reasons, this is simplified from the earlier formulation. In particular, we have
eliminated the node variables and consolidated the graph constraints into cycle constraints.
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generated problems. The results summarized in this sectionare intended to be prelimi-
nary in nature.

A random problem generator was constructed to generate an STPP to be solved by
WLO+. A convertor routine is applied to the problem to construct the equivalent LP, in
the manner discussed above. The random problem is generatedfrom a seed consisting
of a grounded solution. All the programs were compiled optimized on a dual processor
3.06 GHz Linux box. All times reported below include the timeto solve the problem
but exclude the times to convert the inputs. The LP solver utilized was thelp solvefree
MIP solver.

The solvers were tested on problems of varying constraint density. (The density
here is determined as the ratio of the number of constraints compared to the number
that a complete graph would have.) In one set of experiments,the densities were fixed
at 10, 50, or 80%. Five problem instances for each density were generated, and the
results were averaged to form a single data point. In anotherset of experiments, the
density varied with the problem size (in order to obtain sparse graphs), using the for-
mula1600/N , whereN is the number of STP nodes. (This keeps the ratio of constraints
to nodes constant.) Problem sizes varied between 20 and 150 variables.

The results are shown in Figures 7 and 8, where the graphs on the left of the page
show results where densities do not vary with respect to problem size, and those on
the right show results when density varies with size. The toptwo graphs compare so-
lution times for the two solvers, and the bottom two graphs compare solution quality.
WLO+ was shown to be faster than the LP solver, on average, andthis improvement
seemed to increase with problem size. However, LP tended to out-perform WLO+ on
sparse problems. This result is somewhat surprising, giventhe fact that WLO+ uses
the Bellman-Ford shortest-path algorithm to solve the underlying STP. Bellman-Ford is
designed to perform well in sparse graphs. Further analysisis required to interpret this
result.

With respect to solution quality, the SE-optimal solutionsgenerated by WLO+
were, on average, within 90% of the utilitarian-optimal value. These results suggest
that WLO+ offers a feasible alternative to LP-based solution techniques, sacrificing
tolerable amounts of solution quality for an increase in speed.

6 Discussion and Conclusion

The work reported here contributes to the overall goal of increasing the adeptness of
automated systems for planning and scheduling. The objectives of this work overlap
with those of a number of diverse research efforts. First, this work offers an alterna-
tive approach for reasoning about preferences to approaches based on multi-objective
decision theory [2]. Specifically, the characterizations of optimization problems and
their properties resemble those found in [7]. The work in this paper also contributes to,
and builds upon, the on-going effort to extend CSP algorithms and representations to
solve optimization problems or problems where knowledge isuncertain (for example,
[6]). Finally, the focus on solving problems involving piecewise-linear constraints has
similarities to other efforts more grounded in Operations Research (for example, [1]).
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