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Abstract. A temporal reasoning problem can often be naturally chareetd as
a collection of constraints with associated local prefeesrfor times that make
up the admissible values for those constraints. Globaléfepred solutions to
such problems emerge as a result of well-defined operati@sdompose and or-
der temporal assignments. The overall objective of thidniga characterization
of different notions of global temporal preference withineanporal constraint
reasoning framework, and the identification of tractable-classes of temporal
reasoning problems incorporating these notions. Thispayends previous re-
sults by refining the class of useful notions of global terappreference that are
associated with problems that admit of tractable solutgmhhiques. This paper
also resolves the hitherto unanswered question of whetleesdlutions that are
globally preferred from atilitarian criterion for global preference can be found
tractably. A technique is described for identifying andresggnting the entire set
of utilitarian-optimal solutions to a temporal problem kvjireferences.

1 Introduction

Many temporal reasoning problems can be naturally chaiaetkas collections of con-
straints with associated local preferences for times thaléenup the admissible values
for those constraints. For example, one class of vehiclgérmgproblems [14] consists
of constraints on requested service pick-up or deliveryahaw flexibility in temporal
assignments around a specified fixed time; solutions witiyas®ents that deviate from
this time are considered feasible, but may incur a penaityil&ly, dynamic schedul-
ing problems [12], whose constraints may change over times potentially requiring
solution revision, often induce preferences for revisddtgms that deviate minimally
from the original schedule.

To effectively solve such problems, it is necessary to be thbrder the space of as-
signments to times based on some notion of global preferandgo have a mechanism
to guide the search for solutions that are globally preter&ich a framework arises as
a simple generalization of the Simple Temporal Problem (33 in which temporal



constraints are associated with a local preference fumttiat maps admissible times
into values; the result is callésimple Temporal Problem with Preferences (STPPR)
Globally optimal solutions to STPPs emerge as a result ateeflned operations that
compose and order partial solutions.

Different concepts of composition and comparison resudlifferent characteriza-
tions of global optimality. Past work has introduced thredans of global preference:
Weakest Link (maximize the least preferred time), Paretd, #ilitarian. Much of the
work to date has been motivated by the overall goal of findiagtable solutions to
temporal optimization problems with realistic global gmefnce criteria. In particular,
NASA is motivated to create systems that will automaticéithgl optimally preferred
solutions to problems in the rover planning domain [3], vetéie goal is to devise plans
for investigating a number of scientifically promising suie targets.

In addition to reviewing the STPP framework (section 2)s {dper extends previ-
ous results motivated by the overall goal of identifyingfuseotions of global pref-
erence that correspond to problems that can be solvedtihackrst, we introduce a
new category of global optimality callesratified egalitariaroptimality, and prove that
it precisely characterizes the subset of Pareto optimatisols returned by a tractable
technique called WLO+ introduced previously (section &c@d, we provide an affir-
mative answer to the question of whether the utilitariarirgat solutions to temporal
preference problems can be also found tractably withinftaimework. A technique is
described for identifying and representing the whole seiitifarian-optimal solutions
to a temporal reasoning problem with preferences (sectiohtds paper closes with a
summary of experiments (section 5) and a discussion ofdutiark.

2 Simple Temporal Problems with Preferences

A temporal constraintletermines a restriction on the distance between an anpjiedr

of distinct events. In [9], soft temporal constrairtietween eventsand; is defined as

a pair(l, f;;), wherel is a set of intervalg[a, b], a < b} andf;; is alocal preference
functionfrom | J I to a setA of admissible preference values. For the purposes of this
paper, we assume the valuesAnare totally ordered, and that contains designated
values for minimum and maximum preferences.

When I is a single interval, a set of soft constraints defineSiraple Temporal
Problem with PreferencelSTPP), a generalization of Simple Temporal Problems [5].
An STPP can be depicted as a pdi, C) whereV is a set of variables standing for
temporal events or timepoints, add = {([a;;, bi;], fi;)} iS a set of soft constraints
defined overl. An STPP, like an STP, can be organized as a network of vasabl
representing events, and links labeled with constrairdrinftion. Asolutionto an
STPP is a complete assignment to all the variables thafisatike temporal constraints.

A soft temporal constrainf|a,;, b;;], fi;) results from defining a preference func-
tion f;; over an intervala;;, b;;]. Clearly, removing the preference functions from the
set of constraints making up an STPResults in an STP; we call this the STRder-
lying P.

We define greference vectaof all the local preference values associated with a set
F = {f:;} of local preference functions and a solutisnFormally, letf;;(S) refer to



Fig. 1. The STPP for a Rover Science Planning Problem (T is any tim&po

the preference value assigned fayto the temporal value th&t assigns to the distance
between eventsandj, and let

Urpesy = (f12(5), f13(5), ... fin(S),
f23(5), ... fan(S),

A

be thepreference vectoassociated withF' and S. In what follows the context will
permit us to writel/s instead ofU/ () without ambiguity, and/% will refer to thek!”
preference value df’s.

For an example of an STPP, consider a simple Mars rover pigrproblem, illus-
trated in Figure 1. The rover has a sensing instrument and_a Tiiere are two sensing
events, of durations 3 time units and 1 time unit (indicatethe figure by the pairs of
nodes labeled iffsins{ and ing, ins; respectively). The everit' depicts a reference
time point (sometimes referred to as “the beginning of tiptle&t allows for constraints
to be specified on the start times for events. There is a harpgdeal constraint that the
CPU be on while the instrument is on, as well as a soft comdttiaat the CPU should
be on as little as possible, to conserve power. This consisaexpressed in the STPP
as a function from temporal values indicating the possihlations that the CPU is on,
to preference values. For simplicity, we assume that théeggrce functionnin on
the CPU duration constraints is the negated identity fonciie.,min;;(t) = —t; thus
higher preference values, i.e. shorter durations, arepesf.

A solution to an STPP hasglobal preference valyeobtained by combining the
local preference values using operations for compositimhamparison. Optimal so-
lutions to an STPP are those solutions which have the befgrpree value in terms of
the ordering induced by the selected comparison operattving STPPs for globally
preferred assignments has been shown to be tractable, certign assumptions about
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Fig. 2. “Chopping” a semi-convex function.

the “shape” of the local preference functions and about gezations used to compose
and compare solutions.

For example, first consider a class of local preference fonstthat includes any
function such that if one draws a horizontal line anywher¢him Cartesian plane of
the graph of the function, the set &f such thatf(X) is not below the line forms an
interval. This class aemi-convegunctions includes linear, convex, and also some step
functions.

Second, consider an STPP solver based on the notidkeakest Link Optimiza-
tion (WLO). This framework consists of an operator for compogingference values
in A based on the minimal value of the component values. Thisdvark induces
an evaluation of solutions based on a single, “weakest li#tle. Given preference
vectorsUs andUs: corresponding to distinct solutiors and S’, we will say thatS
is Weakest-Link-Optimal (WLO) -preferred S’, or S’ is WLO-dominatedy S, if
min(Ug') < min(Us), wheremin(U) returns the minimum value of vectér. WLO-
optimal solutionsare those to which no other solutions are WLO-preferred.

STPPs with semi-convex preference functions for WLO-ogtisolutions can be
solved tractably by a process called th®p methodThis method is based on the act
of “chopping” a preference function (Figure 2). Semi-cantseimplies that the set of
times for which the preference function returns a value aeleselected chop point
forms a convex interval; call this interval tikbop-induced constrainEor a set of pref-
erence functions in an STPP, chopping all of them at the saeference value induces
a Simple Temporal Problem, namely, of finding a set of ass@mathat satisfies all the
chop-induced constraints. A binary search will return tmgést preference valug,,
for which a solution to the induced STP exists; it can beenvshihat the solutions at
Vopt areWLO-optimal

Because the chop method returns the solution to an STP, fpaibis aflexible
temporal plani.e., a set of solutions that have the same WLO-optimalezadhan flex-
ibility is often considered important in ensuring robust®ma an execution environment
that is uncertain [11]. Nonetheless, the WLO criterion flwbglly preferred solutions
has the disadvantage of being “myopic”, in the sense thaddeb its evaluation on a



single value. This feature can be shown to limit its usefstnia solving real temporal
planning problems. The rover example in Figure 1 can be us#dstrate this myopia.
Because the CPU must be on at least as long as the sensing,emnglobally pre-
ferred solution using WLO has preference value -3. The sebhftions that have the
WLO-optimal value includes solutions in which the CPU dimafor the second sens-
ing event varies from 1 to 3 time units (again, since WLO batsesvaluation solely
on the least preferred value). The fact that WLO is unablédorininate between the
global values of these solutions, despite the fact that teevath 1 time unit is obvi-
ously preferable to the others, can be clearly viewed asitalion.

Less myopic global preference criteria can be defined. Famgie, we can say that
S’ Pareto-dominates if for eachj, U% < UZ, and for somet, UL < U¥,. ThePareto
optimal seof solutions is the set of non-Pareto-dominated solutiSimsilarly, we can
say thatS” utilitarian-dominatess if >°. Uz < >~ Ug,, and theutilitarian optimal set
of solutions is the set of non-utilitarian-dominated sioins.

In a previous result [10], it was shown that a restricted faffPareto-optimality
can be achieved by an iterative application of the chop ntetfibe intuition is that
if a constraint solver could “ignore” the links that contrtb the weakest link values
(i.e. the values that determined the global solution evalog then it could eventually
recognize solutions that dominate others in the Parete@s@&he links to be ignored are
calledweakest link constraint§ormally, they comprise all links in which the optimal
value for the preference function associated with the caimtis the same as the WLO
value for the global solution. Formalizing the process ghtring” weakest link values
is a two-step process of committing the flexible solution émsist of the interval of
optimal temporal values, and reinforcing this commitmentdsetting their preferences
to a single, “best” value. Formally, the process consists of

— squeezing the temporal domain to include all and only tha@daes which are
WLO-optimally preferred; and

— replacing the preference function by one that assigns thigelst (most preferred)
value to each element in the new domain.

The first step ensures that only the best temporal valuesaarefmny solution, and the
second step allows WLO to be re-applied to eliminate Padetninated solutions from
the remaining solution space. The resulting algorithmedaWLO+ returns, in poly-
nomial time, a Simple Temporal Problem (STP) whose solstare a nonempty subset
of the WLO-optimal, Pareto-optimal solutions to an STPRe @lgorithm WLO+ from
[10]is reproduced in Figure 3 for completeness. Whgiis a set of soft constraints, the
STPP(V, Cp) is solved (step 3) using the chop approach. In step 5, we digicoft
constraint that results from the two-step process destebeve as{aop:, opt)s frest)s
where [aop:, bope] IS the interval of temporal values that are optimally prefdr and
frest 1S the preference function that returns the most preferrefipence value for any
input value. Notice that the run time of WLO+ @&(|C]) times the time it takes to
executeSolve(V, Cp), which is a polynomial.

WLO+, applied to the rover example in Figure 1, finds a Paretox@l solution in
two iterations of the while loop. In the first iteration, theakest link is that between
the start and end of the first CPU event. WLO+ deletes thisdimdt replaces it with
one with the interva(3, 3] and the local preference functigfj.s;. This new STPP is



Inputs: an STPP = (V, C)

Output:
An STP(V, Cp) whose solutions are Pareto optimal for
1Cp=C

(2) while there are weakest link soft constraint€ip do
(3) Solve(V, Cp)

(4) Delete all weakest link soft constraints frarh
(5) For each deleted constraifit, b], f),
(6) add<[aopt7 bOPtL fb€5t> toCp

(7) Return(V, Cp)

Fig. 3. STPP solver WLO+ returns a solution in the Pareto optimab&soblutions

then solved on the second iteration, whereby the WLO-optmlation with the CPU
duration of 1 is generated. The solution to this STPP is at®amgtimal solution to the
original problem.

WLO+ was a positive result in the search for tractable methiod finding glob-
ally preferred solutions based on less myopic criteria fobgl preference than WLO-
optimality. We now proceed to refine and expand these resuliso ways: first by
offering a more concise characterization of the class aitsmi returned by WLO+,
and secondly, by showing how restricted classes of STPPawitfiitarian criterion for
global preference can be solved tractably.

3 WLO+ and Stratified Egalitarianism

As noted in the previous section, the set of solutions retifyy running WLO+ on an
STPP is a subset of the set of Pareto Optimal Solutions foptiodlem. In this section,
we present a concise description of this set. By doing s, riévealed that WLO+ is
based on a useful concept of global preference.

We introduce a concept of global preference called StrdtHigalitarianism (SE).
Consider again two preference vectblis andUg: associated with solutions and.S’.
We will say S’ SE-dominates at preference level (or stratum)if:

- Ul < zimpliesU%, > Uk,
— There exists ansuch that/%; < z andU¥, > UL.
— U > ximpliesUL, > z.

We say thatS” SE-dominate$ (without further qualification) if there is any level
such thatS’” SE-dominate$ atz. It is not hard to see that the SE-dominance relation is
antisymmetric and transitivethus inducing a partial ordering of solutions. A solution
S’ will be said to be SE-optimal if it is not SE-dominated. Ndwaitif a solutionS’
Pareto-dominateS, thenS’ SE-dominatess at the “highest” level of thé/g, vector.
Thus, SE-optimality implies Pareto optimality. Furthemeaif S’ dominatesS in the

! The proof makes use of the requirement that the prefereraesvhe totally ordered.



WLO ordering, thenS” SE-dominates at the “lowest” level of théJg, vector. Thus,
SE-optimality also implies WLO optimality.

Using an economic metaphor to ground intuitianrepresents a sort qioverty
line, and a “policy” S’ has a better overall quality thahif some members below the
poverty line inS are improved inS’, even if some of those above the poverty line in
S are made worse off i$” (as long as they do not drop below the poverty line). This
metaphor suggests that SE-optimality could be a reasormaitdeion for specifying
globally preferred solutions.

Economists have considered some notions of egalitariaimality, but have re-
jected them as being "non-rational” because they do notyirBpreto optimality. Note
that SE-optimality does, however, meet this rationaliftecion, but we are unaware of
any consideration of the SE preference ordering in the eo@®iterature.

We now prove that the WLO+ algorithm finds exactly the SE+optisolutions.

Theorem 1. The set of solutions returned by WLO+ is precisely the seEsb&imal
solutions.

Proof. Consider a solutio not returned by WLO+, i.e., one that is eliminated at some
iteration of the WLO+ algorithm; let the optimal value (j.ealue of the weakest link)
of the set of solutions be at that iteration. LetS’ be any survivor at that iteration.
There must be some linksuch thatU} < v (otherwiseS wouldn't be eliminated).
But U%, > v sinceS’ survives. Thusy/i, > UL. Note also thatZ, > v for all links
j. Thus, for any valué such thatV% < v, we haveU%, > UE. It follows that S is
dominated at stratum.

Conversely, supposgis dominated at some stratuntut, for the sake of contradic-
tion, suppose is not excluded from the set of solutions returned by WLO-brfthe
assumption tha$' is dominated at stratum, there exists ar$’ and: such that > U,
andU%, > U, and for anyj, U%, < v impliesU%, > U%. During the execution of the
WLO+ algorithm, an increasing sequeniceof preference values;, v, ..., vy = 1
(where 1 is the “best” preference value) is created, reptespthe WLO optimal val-
ues at each iteration. Clearly < 1 (where 1is the “best” preference value), so one of
the V's must exceedfg. Suppose i is the smallest element v such thatx > Ug.
Note thatS would be removed at this iteration, as a result of its being/MioO optimal,
unless the preference function for linkiad been reset at an iteratidn< K. But that
function would get reset only ifwas a weakest link at. Thenv; < Ug sinceJ < K,
andvg is the smallesV such thatvg > Ug. Note however, that for all linkg, either
UL, > v > vy orUL, > UL. Thus,S” would have survived to this iteration § had.
However,Ug, > Ug > v, which contradicts the fact thais a weakest link.O

3.1 SE versus Leximin

Another global optimality criterion discussed in [8]) iximin optimality. The leximin

ordering compares the minimum value of two preference vegctben the second low-
est and so on, until it finds a difference; the ordering of the& Buch mismatch deter-
mines the leximin ordering of the vectors. It is not diffictdtshow that SE-dominance
implies leximin-dominance, but the converse is not trueeneayal. For example, the



preference vectofs, 1) dominateg1, 3) in the leximin ordering but not in the SE or-
dering. (The SE ordering cares about individuals but lexidues not.)
Nevertheless, it is possible to prove a partial converselasifs.

Theorem 2. If x > y in leximin-order, therz > y in SE-order, wherer, y, andz are
preference vectors, and= (z + y)/2 is the average of andy.

Proof. Note that the coordinate ordering is arbitrary, so we canrasswithout loss of
generality thaty is sorted in increasing order. (This simplifies the notabetow.)

Supposer > y in leximin-order. Letk = min{j | z; # y;}. Note that forj > k,
we haver; > y, since otherwisgy > « in leximin-order instead of vice versa. Also
y; > yi for j > k, sincey is sorted. Thus, fo§ > k, we havez; > y;. Itis also easy
to see that ifc; andy; are unequal, which can only happen jor k, then one of them
must exceedy, S0z; > yy in this case. It follows that either; = y; or z; > yi. In
particular,z, > yy.

Now letv = min{z; | z; > yx}. (Note thatv is well-defined sincg = & satisfies
the condition.) We claim that >gE y at levelv. To see this, note from the previous
paragraph that for all eitherz; = y;, in which case;; = y;, or z; > y. In the latter
casez; > v by the definition ofv. Since alsc;, > vy, andv > y;, this establishes the
result.

O

It is well-known that the solutions to an STPP form a convaxseif S andS’ are
solutions, ther(S + S’)/2 is also a solution. Furthermore, if the preference funation
are convex, thed/l , 5y, > (Ug + Ug,)/2 for all j. It follows that if a solutionS
is leximin-dominated by a solutiof’, then it is SE-dominated b§5 + S’)/2, which
is also a solution. Thus, in the setting of an STPP with corpreterence functions,
leximin-optimality coincides with SE-optimality. (Howey, our previous remarks show
they are not equivalent in a more general setting.)

4 Utilitarian Optimality

Perhaps the most natural criterion for global optimalitytiditarian, where the global
value of a solution is the sum of the local values. In thisisectve consider applying a
utilitarian global optimality criterion to the temporalgference problem. We show that
determining the set of all utilitarian optimal solutionsaasSTP is tractable in the case
where all the preference functions are convex and piecelivisar. Piecewise linear
preference functions characterize soft constraints inymeal scheduling problems; for
example, in vehicle routing (where the best solutions avsecto desired start times)
and in dynamic rescheduling (where the goal is to find sahstibhat minimally perturb
the original schedule).

We first consider the problem of findingsangleutilitarian optimal solution. (Some
constructions related to this have previously appeardudtiterature [1, 12]. Our main
contribution in this respect will be what follows, where tivbole set of solutions is
determined as an STP.)

Consider an STPP with preferendgs= { f;;}, and assume that the goal is to find
a utilitarian optimal solutiorf, i.e. where}_,. f;;(.5) is optimal. Suppose each; is
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Fig. 4. Convex Piecewise Linear Function

convex and piecewise linear. Thus, there is a sequenceafbetting line segments
that make upf;;. We will denote the individual linear functions correspiongito the
segments by, f7,..., f;; ", asillustrated in Figure 4.

In this case, we will show that the utilitarian optimizatiproblem can be reduced
to a Linear Programming Problem (LPP), which is known to Heae in polynomial
time by Karmarkar's Algorithm [4]. This result generalizix® observation in [9] that
STPPs with linear preference functions can be mapped inRsLP

Since thef’s are convex, notice that < f;;(x) if and only if y < ilj(a:) Ny <

S(@)A. .y < fi’;.“j (z). (See Figure 4.) For the LPP, we introduce an auxiliary \deia
Z;; for eachf;;, together withm,; additional linear constraints of the form

Zij < fE(9).

We also introduce a set of variablés = {X;, X5, ... X,,} for the nodes in the STP.
Note thatX; and X, respectively, correspond to the start and end points oétlye
associated witlf;;. An interval[p;;, ¢;;] denotes the domain ¢f;;.

The complete LPP can now be formulated as follows. The isdice assumed to
range over their available values, which should be clean fite above discussion. Note
thatij in {f;;} and{Z;,} range over the edges associated with preferences. Thig coul
be a small subset of the entire edges in real applicationalliziwe introduce a variable
S;; for each temporal distance assignment in a solution.

— Variables:{X;}, {S;;}, and{Z;;}.

— Constraints (conjunctive over all values of the indices):
1. Sij = Xj — Xi
2. pij < 8ij < qij
3. Z;; < f{?‘(s)

— Objective Function}_,; Z;;

Theorem 3. The solution to the LPP as formulated above provides aaitiin optimal
solution to the STPP.



Proof. Consider the candidate STPP soluti®mbtained from the values of theX; }
variables in an optimal solution of the LPP. Clearly, the staaints (items 1 and 2)
guarantee tha$ satisfies the STP underlying the STPP. It only remains to sheiv
it is optimal in the utilitarian ordering for the STPP. Frohetconstraints in item 3,
we see thaZ;; < f[(S) for each linear componettand henceZ;; < fi;(5). We
claim thatZ;; = f;;(S). To see this, note that thg;; variables can be varied inde-
pendently without affecting the constraints in items 1 antdf Z;; < f;;(.S), then the
objective function can be increased, without violating eagstraints, by increasing; ;

to f;;(.S), which contradicts the assumption that the solution isaalyeoptimal. Thus,
Zij = [ij(S) foreachij, and soy_,; Zi; = >, fi;(S)

Suppose now there was a better solutitirior the STPP in terms of the utilitarian
ordering. Therd_, f;;(S") > >, fi;(S) = >_,; Zi;. Observe that we can now for-
mulate a better solution to the LPP basedS6ifwhere we se;; = f;;(S’)), which is
a contradiction. Thus, th& obtained from the LPP is also optimal for the STRP.

The previous result shows that, for an STPP with preferamuetions that are con-
vex and piecewise linear, a single solution can be obtaigeddpping the problem into
an LPP. An interesting question presents itself: is thei@apact representation for the
entire set of the utilitarian optimal solutions to the STPP? In igatér, can the set be
represented as the solutions to an STP, as can the corrésgesetifor SE-optimality?

This question is answered in the affirmative by the theoreabftilows. As it turns
out, whereas solving a primal LPP problem gives a singletgslusolving instead
a dual LPP problem [13] provides the entire set of solutions. Sjdly, the dual
solution is used to find additional temporal constraintstom $TP that underlies the
STPP so that its solutions are all and only the optimal smhstto the STPP.

Theorem 4. Suppose an STPP has preference functions that are convex and piece-
wise linear. Then the set of all utilitarian optimal soluti® can be represented as the
solutions to an STP that is formed by adding constraints ¢aSfP underlying.

Proof. We map the STPP into an LPP in the same way as before. Notedtatmapply
certain results from linear programming theory [13, pag#]1ibe set of solutions to an
LPP coincides with one of the faces of the (hyper) polyhedhan defines the feasible
region? Note also that the faces can be obtained by changing some infajualities to
equalities. In a well-known result, the indices of the coaists that change to equalities
can be obtained by solving tliial of the original LPP.

There are two kinds of inequalities in the LPP that are n&aaly equalities: edge
bounds and preference value bounds. In the former casegicigaan edge bound to
an equality instead of an inequality can be accomplisheddioyng a simple temporal
constraint. In the latter case, an inequality of the fafm < f{fj(S) is changed to the

equality Z;; = i’“j(S). This change can be accomplished by restricting the solutio
to be within the bounds of thé: “piece” of the piecewise linear preference function,
which can also be performed through adding a simple tempmnastraint. Figure 5
demonstrates this process. A piecewise-linear functidh thiree pieces is displayed.

One of the pieceg;, has become part of an equality preference constfaiat f (X ) as

2 |n this context, the termfaceincludes vertices, edges, and higher-dimensional bogrstim-
faces of the polyhedron, as well as the whole polyhedron.



the result of solving the dual LPP. The consequence of thisigas to add the temporal
bound[a, b] to the STP underlying the original STPP. This bound limitsdration of
the edge to be that of the piece of the original preferencetiom that has become an
equality. We make the following claims.

1. No temporal value outside the interyalb] can be part of an optimal solution; and
2. Every solution of the restricted STP is an optimal solutdthe original STPP.

The first claim is obvious from the figure: if there are solasavhich contain temporal
values outside the bound, they must receive a preferenae leds than the linear func-
tion of the selected piece (by the convexity of the prefeednaction); hence they are
not optimal, since this piece is satisfied with equality irtla optimal solutions.

To see that the second claim is true, consider any sol#iohthe restricted STP.
We can extend this to a feasible solution of the (primal) L§B&ttingZ,; = f;;(S)
for eachi andj. Note thatf;;(S) = i’;(S) for each preference edge that has been
restricted to & piece as discussed above, 89 = ffj(S) will be satisfied in these
cases. Thus, the extended solution is in the optimal fackeLPP, and henc# is
optimal for the STPP.

Thus, from the information provided by the dual solutionhe £ PP, a new STP is
formed whose solutions are all and only the utilitarianiopd solutions of the original
STPP.

O

a b

Fig. 5. Squeezing a Temporal Bound by Adding a Preference Equality

This theorem suggests an approach to transforming an STBRmSTP all of
whose solutions are utilitarian-optimal for the originedplem. First, formulate an LPP
as described in the theorem. Second, solve the dual of thetb.Rientify the LPP
constraints that change from being inequalities to beingakties. Third, map these
changes to the STP that underlies the original STPP, agaieszsibed above.

As an example, consider the STPP shown in figure 6 (left) witthesA, B, andC
and edges1, 22, andz3 for which the domains ar®, 10]. The preference functiofi
on bothx1 andx2 is given by

@) = rfor0<z <6
)= 16 for6 <z <10



Primal Variables
x1 x2 x3 z1 z2
0 43 10 Dual Variable§ ~ Primal Constraints
% @ yl x1 <10
y2 X2 <10
y3 x3 <10
f f y4 -x1 +z1 <o
/ / y5 z1 <6
[ Z y6 -X2 +22< 0
0 1 10 0 ) 10 y7 22< 6
y8 x1 +x2 -x3 <0
a y9 -X1 -x2 +x3 <0

Fig.6.STPP to LPP example. The primal objectiverisx : (21 4+ 22) while the dual objective
ismin : (10y1 + 10y2 4+ 10y3 + 6y5 + 6y7).

Note that this is convex and piecewise-linear with 2 pieGé®re is no preference (or
constant preference) fas3.
We can obtain a single optimal solution to this STPP by sgén LPP:

maximizecX : AX <b

whereX = (z1,22,23,21,22) andz1 andz2 are the preferences farl andz2 re-
spectively. This is shown in more detail on the right of figarfeEach optimal solution
has a value of 10 for the objective. However, our goal is tofiivedadditional constraints
needed to define the STP that characterakthe optimal solutions. For this, we need
only find a single solution to the dual problem. The dual sotuhas{y3, v4, y6, y8}

as the variables with non-zero values. As a consequenceddtfality Theorem, we
conclude that the inequalities corresponding 3o 4, y6, andy8, shown in figure 6,
are satisfied as equalities. From8(= 10) we conclude that3 satisfies [10,10]. From
(—z1 + z1 = 0) we conclude that1 is restricted to [0,6] (a single piece of the prefer-
ence function), and similarly for2 using (2 + 22 = 0). By computing the minimal
STP, we can further restrietl andz2 to [4, 6].

5 Experimental Results

Experiments were conducted comparing the performance oDWiith a Simplex

LP solver. As noted above, WLO+ generates flexible plans Iprmonial (worse-case
cubic) time that are SE-optimal. The simplex algorithm &apto temporal planning
generates fixed utilitarian-optimal plans and is known tdgren well in practice but

takes exponential time in the worst case. In these expetsnem were interested in
comparing both the run-time performance of the two appreagcas well as the quality
of WLO+ solutions with respect to an utilitarian evaluatiom a variety of randomly

% For expository reasons, this is simplified from the earl@nfulation. In particular, we have
eliminated the node variables and consolidated the grapsti@ints into cycle constraints.
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generated problems. The results summarized in this sezteimtended to be prelimi-
nary in nature.

A random problem generator was constructed to generate BR 8Tbe solved by
WLO+. A convertor routine is applied to the problem to coustithe equivalent LP, in
the manner discussed above. The random problem is genémaed seed consisting
of a grounded solution. All the programs were compiled oftéd on a dual processor
3.06 GHz Linux box. All times reported below include the titoesolve the problem
but exclude the times to convert the inputs. The LP solvéizatl was thdp_solvefree
MIP solver.

The solvers were tested on problems of varying constrainsitle (The density
here is determined as the ratio of the number of constraotypared to the number
that a complete graph would have.) In one set of experimtrggensities were fixed
at 10, 50, or 80%. Five problem instances for each densitg wenerated, and the
results were averaged to form a single data point. In anabieof experiments, the
density varied with the problem size (in order to obtain spagraphs), using the for-
mulal600/N, whereN is the number of STP nodes. (This keeps the ratio of conssrain
to nodes constant.) Problem sizes varied between 20 andatBbles.

The results are shown in Figures 7 and 8, where the graphsedefttof the page
show results where densities do not vary with respect tolpnotsize, and those on
the right show results when density varies with size. Thetéapgraphs compare so-
lution times for the two solvers, and the bottom two graph®gare solution quality.
WLO+ was shown to be faster than the LP solver, on averagettasdmprovement
seemed to increase with problem size. However, LP tendedttparform WLO+ on
sparse problems. This result is somewhat surprising, diverfact that WLO+ uses
the Bellman-Ford shortest-path algorithm to solve the dgihey STP. Bellman-Ford is
designed to perform well in sparse graphs. Further analyseqjuired to interpret this
result.

With respect to solution quality, the SE-optimal solutiayenerated by WLO+
were, on average, within 90% of the utilitarian-optimalual These results suggest
that WLO+ offers a feasible alternative to LP-based sofutiechniques, sacrificing
tolerable amounts of solution quality for an increase irespe

6 Discussion and Conclusion

The work reported here contributes to the overall goal ofdasing the adeptness of
automated systems for planning and scheduling. The obgsctf this work overlap
with those of a number of diverse research efforts. Firss, work offers an alterna-
tive approach for reasoning about preferences to appredm®sed on multi-objective
decision theory [2]. Specifically, the characterizatiofisoptimization problems and
their properties resemble those found in [7]. The work is flaper also contributes to,
and builds upon, the on-going effort to extend CSP algoritlamd representations to
solve optimization problems or problems where knowledgeisertain (for example,
[6]). Finally, the focus on solving problems involving p@eise-linear constraints has
similarities to other efforts more grounded in Operatioes&arch (for example, [1]).
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