I. Equation of State:

\[pv = RT \quad \text{or} \quad p = \rho RT \quad \text{for a thermally perfect gas} \]

II. Expressions for Work:

A. Work for a simple compressible substance

\[W = \int_{V_i}^{V_f} p_{ext} dV \]

B. Work for a simple compressible substance undergoing a quasi-static process

\[W = \int_{V_i}^{V_f} p dV \]

C. Work for an isothermal, quasi-static process of a simple compressible substance

\[W = mRT \cdot \ln \left(\frac{V_f}{V_i} \right) = mRT \cdot \ln \left(\frac{p_1}{p_2} \right) \]

D. Work for an isobaric quasi-static process of a simple compressible substance

\[W = p(V_f - V_i) \]

E. Work for a quasi-static adiabatic process

\[W = -(U_f - U_i) \]

F. Work for quasi-static adiabatic process of an ideal gas

\[W = -mc_v(T_f - T_i) \]

III. Forms of the First Law of Thermodynamics

A. Most general forms

\[\Delta E = Q - W, \quad \Delta e = q - w, \quad dE = \delta Q - \delta W, \quad \text{and} \quad de = \delta q - \delta w \]

B. Neglecting changes in kinetic and potential energy

\[\Delta U = Q - W \quad \Delta u = q - w, \quad dU = \delta Q - \delta W, \quad \text{and} \quad du = \delta q - \delta w \]

C. Neglecting changes in kinetic and potential energy, in terms of enthalpy
\[H = U + pV \]
therefore
\[dH = dU + pdV + Vdp \]

so
\[dH = \delta Q - \delta W + pdV + Vdp \]

or
\[dh = \delta q - \delta w + pdv + vdp \]

D. For quasi-static processes where changes in kinetic and potential energy are not important.

\[dU = \delta Q - pdV \quad \text{or} \quad du = \delta q - pdv \]

\[dH = \delta Q + Vdp \quad \text{or} \quad dh = \delta q + vdp \]

E. For quasi-static processes of an ideal gas where changes in kinetic and potential energy are not important.

\[mc_vdT = \delta Q - pdV \quad \text{or} \quad c_vdT = \delta q - pdv \]

\[mc_pdT = \delta Q + Vdp \quad \text{or} \quad c_pdT = \delta q + vdp \]

IV. The First Law of Thermodynamics as a Rate Equation

A. Most general form

\[
\frac{dE_{c.v.}}{dt} = \dot{Q}_{c.v.} - \dot{W}_{c.v.} + \dot{m}_{\text{in}} e_{\text{in}} - \dot{m}_{\text{out}} e_{\text{out}}
\]

\[
\begin{array}{l}
\text{(rate of change)} \\
\text{(of energy in c.v.)} \\
\text{(rate of heat)} \\
\text{(added to c.v.)} \\
\text{(rate of work)} \\
\text{(done)} \\
\text{(rate of energy)} \\
\text{(flow in to c.v.)} \\
\text{(flow out of c.v.)}
\end{array}
\]

B. For a steady flow process

\[
\frac{d}{dt} = 0 \quad \text{and} \quad \dot{m}_{\text{in}} = \dot{m}_{\text{out}} = \dot{m}
\]

\[
\dot{Q}_{c.v.} - \dot{W}_{c.v.} = \dot{m}(e_{\text{out}} - e_{\text{in}})
\]

or

\[
\dot{Q}_{c.v.} - \dot{W}_{c.v.} = \dot{m}\left[(IE + KE + PE)_{\text{out}} - (IE + KE + PE)_{\text{in}}\right]
\]
C. For a steady flow process neglecting changes in potential energy

\[
\dot{Q}_{c.r.} - \dot{W}_{c.r.} = m \left[\left(u + \frac{c^2}{2} \right)_{out} - \left(u + \frac{c^2}{2} \right)_{in} \right] \\
\text{or}
q_{1-2} - w_{1-2} = u_2 - u_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2}
\]

written in terms of external or shaft work

\[
q_{1-2} - w_{st-2} = (u_2 + p_2 v_2) - (u_1 + p_1 v_1) + \frac{c_2^2}{2} - \frac{c_1^2}{2}
\]

or in terms of shaft work and enthalpy

\[
q_{1-2} - w_{st-2} = h_2 - h_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2}
\]

D. Steady flow energy equation for an ideal gas

\[
q_{1-2} - w_{st-2} = \left(c_p T_2 + \frac{c_2^2}{2} \right) - \left(c_p T_1 + \frac{c_1^2}{2} \right)
\]

E. Steady flow energy equation for an ideal gas for an adiabatic process with no shaft work

\[
c_p T_2 + \frac{c_2^2}{2} = c_p T_1 + \frac{c_1^2}{2}
\]

The quantity that is conserved is called the stagnation temperature.

\[
T_r = T + \frac{c^2}{2c_p} \quad \left(\text{or} \quad \frac{T_r}{T} = 1 + \frac{\gamma - 1}{2} M^2 \quad \text{usin g} \quad a = \sqrt{\gamma RT} \right)
\]

It is also convenient to define the stagnation enthalpy, \(h_r \)

\[
h_r = c_p T + \frac{c^2}{2}
\]

so we can rewrite the Steady Flow Energy Equation in a convenient form as

\[
q_{1-2} - w_{st-2} = h_{r2} - h_{r1}
\]
F. Steady flow energy equation for an ideal gas for a quasi-static adiabatic process with no shaft work

\[\frac{p_T}{p} = \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} \]

G. For a uniform state, uniform flow process from time \(t_1 \) to time \(t_2 \)

\[
\left[m_2 \left(u + \frac{c^2}{2} + gZ \right) \right]_{t_2} - m_1 \left(u + \frac{c^2}{2} + gZ \right)_{t_1} + \sum m_{\text{out}} \left(h + \frac{c^2}{2} + gZ \right)_{\text{out}} - \sum m_{\text{in}} \left(h + \frac{c^2}{2} + gZ \right)_{\text{in}} = Q_{C,V} - W_{S,C,V}.
\]

H. For a steady process in terms of molar flow rates and enthalpy per mole (neglecting changes in kinetic and potential energy)

\[\sum \dot{n}_{\text{out}} \bar{h}_{\text{out}} - \sum \dot{n}_{\text{in}} \bar{h}_{\text{in}} = \dot{Q} - W_s. \]

V. Other relationships

A. Relationship between properties for quasi-static, adiabatic processes for thermally perfect gases

\[pv^\gamma = \text{constant} \]

\[\frac{p_2}{p_1} = \left(\frac{T_2}{T_1} \right)^{\gamma/\gamma - 1} \quad \text{and} \quad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2} \right)^{\gamma - 1} \quad \text{and} \quad \frac{p_2}{p_1} = \left(\frac{v_1}{v_2} \right)^\gamma \]

B. Thermal efficiency of a cycle

\[\eta = \frac{\text{net work}}{\text{heat input}} = \frac{\Delta w}{q_{\text{comb}}} \]

C. Quality, \(x \), for two-phase systems

\[x = \frac{\text{mass vapor}}{\text{total mass}} = \frac{v - v_f}{v_{fg}} \quad \text{or} \quad v = (1 - x)v_f + xv_g \]

D. Entropy

\[ds = c_v \frac{dT}{T} + R \frac{dv}{v} \]
For the case of a thermally perfect gas then

\[s - s_0 = \int_{T_0}^{T} c_v \frac{dT}{T} + R \ln \left(\frac{v}{v_0} \right) \]

or in situations with \(c_v = \text{constant} \)

\[s - s_0 = c_v \ln \left(\frac{T}{T_0} \right) + R \ln \left(\frac{v}{v_0} \right) \]

So for the case of a thermally perfect gas then

\[s - s_0 = \int_{T_0}^{T} c_p \frac{dT}{T} - R \ln \left(\frac{p}{p_0} \right) \]

or in situations with \(c_v = \text{constant} \)

\[s - s_0 = c_p \ln \left(\frac{T}{T_0} \right) - R \ln \left(\frac{p}{p_0} \right) \]

VI. Nomenclature

- \(a \): speed of sound (m/s)
- \(c \): velocity (m/s)
- \(c_p \): specific heat at constant pressure (J/kg-K)
- \(c_v \): specific heat at constant volume (J/kg-K)
- \(e \): energy (J/kg)
- \(E \): energy (J)
- \(h \): enthalpy (J/kg)
- \(h_T \): total or stagnation enthalpy (J/kg)
- \(H \): enthalpy (J)
- \(m \): mass (kg)
- \(n \): number of moles (moles)
- \(p \): pressure (kPa)
- \(p_T \): total or stagnation pressure (kPa)
- \(q \): heat (J/kg)
- \(Q \): heat (J)
- \(R \): gas constant (J/kg-K)
- \(s \): entropy (J/K)
- \(S \): entropy (J/kg-K)
- \(t \): time (s)
- \(T \): temperature (K)
- \(T_T \): total or stagnation temperature (K)
- \(u \): internal energy (J/kg)
- \(U \): internal energy (J)
- \(v \): specific volume (m³/kg)
- \(V \): volume (m³)
\(w \) work (J/kg)
\(w_s \) shaft or external work (J/kg)
\(W \) work (J)
\(X \) quality
\(\gamma \) ratio of specific heats, \(c_p/c_v \)
\(\eta \) thermal efficiency
\(\rho \) density (kg/m\(^3\))