Due before 4PM on Wednesday November 26, 2003, in the boxes in 2-106. No late homework will be accepted. There is one box for each recitation section. For full credit, please be sure to show and explain your work.

1. Suppose A is a 3 by 3 symmetric matrix with unit eigenvectors u_1, u_2, and u_3. If its eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 1$, $\lambda_3 = -1$, what are the matrices U, Σ, and V^T in its SVD?

2. Let $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and $K = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

 (a) What are the eigenvalues of J and K?
 (b) Show that J is not similar to K.

3. For each of the following statements, state whether the statement is true or false. If the statement is true, explain why it is true. If the statement is false, give a counterexample to the statement (i.e. give an specific example for which the statement is incorrect and show that the statement is false for that example).

 (a) If A is similar to B, then A^2 is similar to B^2.
 (b) If A^2 is similar to B^2, then A is similar to B.
 (c) $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$ is similar to $\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$
 (d) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2, the eigenvalues stay the same.

4. Suppose a linear transformation T transforms $(1,1)$ to $(2,2)$ and $(2,1)$ to $(0,0)$. Find $T(v)$ when

 (a) $v = (5,3)$
 (b) $v = (0,1)$.

5. Let V denote the vector space of all 2 by 2 matrices. Let T denote the function defined by

$$T(M) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} M \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

for all M in V.

 (a) Show that T is a linear transformation.
 (b) What is the dimension of the range of T?
 (c) Describe all matrices in the kernel of T.