18.06, Fall 2003, Problem Set 9

Due before 4PM on Wednesday, December 3rd, 2003, in the boxes in 2-106. No late homework will be accepted. There is one box for each recitation section. For full credit, please be sure to show and explain your work.

1. Let \(\mathbf{x}_1, \mathbf{x}_2 \) be a basis of \(\mathbb{R}^2 \) and \(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3 \) be a basis of \(\mathbb{R}^3 \). Let \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) be a linear transformation defined by

\[
f(\mathbf{y}_1) = \mathbf{x}_1 - \mathbf{x}_2, f(\mathbf{y}_2) = \mathbf{x}_2, f(\mathbf{y}_3) = -\mathbf{x}_1 - \mathbf{x}_2.\]

Find a new basis \(\mathbf{u}_1, \mathbf{u}_2 \) of \(\mathbb{R}^2 \) (written in terms of \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \)) and a new basis \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) of \(\mathbb{R}^3 \) (written in terms of \(\mathbf{y}_1, \mathbf{y}_2, \) and \(\mathbf{y}_3 \)) such that

\[
f(\mathbf{v}_1) = 3\mathbf{u}_1, f(\mathbf{v}_2) = 2\mathbf{u}_2, f(\mathbf{v}_3) = 0.\]

2. Let

\[
A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}.
\]

(a) Compute the Singular Value Decomposition (SVD) of \(A \) and \(B \).
(b) Compute the pseudo-inverse \(A^+ \) and \(B^+ \) of \(A \) and \(B \), respectively.

3. If \(P \) and \(Q \) are orthogonal, show that \(A \) and \(PAQ \) have the same singular values.

4. Compute the Fourier coefficients \(a_k \) and \(b_k \) of \(f(x) = \frac{1}{2} \sin^2(x) + x \) defined between 0 and 2\(\pi \).

5. True or false (give a reason if true or a counterexample if false):

(a) If \(A \) is a real matrix then \(A + iI \) is invertible.
(b) If \(A \) is a Hermitian matrix then \(A + iI \) is invertible.
(c) If \(U \) is a unitary matrix then \(A + iI \) is invertible.
(d) The inverse of a Hermitian matrix is Hermitian.
(e) If \(U \) and \(V \) are unitary matrices then \(UV \) is unitary.
(f) If \(U \) and \(V \) are unitary matrices then \(U + V \) is unitary.