Your PRINTED name is: ____________________

Please circle your recitation:

1) M 2 2-131 P. Lee 2-087 2-1193 lee
2) M 2 2-132 T. Lawson 4-182 8-6895 tlawson
4) T 10 2-132 P-O. Persson 2-363A 3-4989 persson
5) T 11 2-131 P-O. Persson 2-363A 3-4989 persson
6) T 11 2-132 P. Pylyavskyy 2-333 3-7826 pasha
7) T 12 2-132 T. Lawson 4-182 8-6895 tlawson
8) T 12 2-131 P. Pylyavskyy 2-333 3-7826 pasha
9) T 1 2-132 A. Chan 2-588 3-4110 alicec
10) T 1 2-131 D. Chebikin 2-333 3-7826 chebikin
11) T 2 2-132 A. Chan 2-588 3-4110 alicec
12) T 3 2-132 T. Lawson 4-182 8-6895 tlawson
1 (30 pts.) The matrix A has a varying $1 - x$ in the $(1, 2)$ position:

$$A = \begin{bmatrix}
2 & 1 - x & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 4 \\
1 & 1 & 3 & 9
\end{bmatrix}$$

(a) When $x = 1$ compute $\det A$. What is the $(1, 1)$ entry in the inverse when $x = 1$?

(b) When $x = 0$ compute $\det A$.

(c) How do the properties of the determinant say that $\det A$ is a linear function of x? For any x compute $\det A$. For which x's is the matrix singular?
2 (30 pts.) This matrix Q has orthonormal columns q_1, q_2, q_3:

$$
Q = \begin{bmatrix}
.1 & .5 & a \\
.7 & .5 & b \\
.1 & -.5 & c \\
.7 & -.5 & d \\
\end{bmatrix}
$$

(a) What equations must be satisfied by the numbers a, b, c, d? Is there a unique choice for those numbers, apart from multiplying them all by -1?

(b) Why is $P = QQ^T$ a projection matrix? (Check the two properties of projections.) Why is QQ^T a singular matrix? Find the determinants of Q^TQ and QQ^T.

(c) Suppose Gram-Schmidt starts with those same first two columns and with the third column $a_3 = (1, 1, 1)$. What third column would it choose for q_3? You may leave a square root not completed (if you want to).
3 (40 pts.) Our measurements at times $t = 1, 2, 3$ are $b = 1, 4,$ and b_3. We want to fit those points by the nearest line $C + Dt$, using least squares.

(a) Which value for b_3 will put the three measurements on a straight line?
Whi ch line is it? Will least squares choose that line if the third measurement is $b_3 = 9$? (Yes or no).

(b) What is the linear system $Ax = b$ that would be solved exactly for $x = (C, D)$ if the three points do lie on a line? Compute the projection matrix P onto the column space of A. Remember the inverse

$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
$$

(c) What is the rank of that projection matrix P? How is the column space of P related to the column space of A? (You can answer with or without the entries of P computed in (b).)

(d) Suppose $b_3 = 1$. Write down the equation for the best least squares solution \tilde{x}, and show that the best straight line is horizontal.
xxx