Your PRINTED name is:________________________

Please circle your recitation:

1 T 9 2-132 Kestutis Cesna\ vicius 2-089 2-1195 kestutis
2 T 10 2-132 Niels Moeller 2-588 3-4110 moller
3 T 10 2-146 Kestutis Cesna\ vicius 2-089 2-1195 kestutis
4 T 11 2-132 Niels Moeller 2-588 3-4110 moller
5 T 12 2-132 Yan Zhang 2-487 3-4083 yanzhang
6 T 1 2-132 Taedong Yun 2-342 3-7578 tedyun
Let \(A = \begin{pmatrix} .5 & 0 & 0 \\ .5 & .9 & 0 \\ 0 & .1 & 1 \end{pmatrix} \).

1. (4 pts) True or False: The matrix \(A \) is Markov.

 True. Markov matrices have columns that sum to 1 and have non-negative entries. The answer of false applies to what is known as “Positive Markov Matrices.”

2. (6 pts) Find a vector \(x \neq 0 \) and a scalar \(\lambda \) such that \(A^T x = \lambda x \).

 The obvious choice is \((1,1,1)\) with \(\lambda = 1 \) as this is the column sum property. Also easy to see is \((1,0,0)\) with \(\lambda = 0.5 \).
3. (4 pts) True or False: The matrix A is diagonalizable. (Explain briefly.)

True. The three eigenvalues, on the diagonal, are distinct.

4. (4 pts) True or False: One singular value of A is $\sigma = 0$. (Explain briefly.)

False. The matrix is nonsingular, since it has no zero eigenvalues. Nonsingular square matrices have all n singular values positive.

5. (6 pts) Find the three diagonal entries of e^{At} as functions of t.

They are e^t, $e^{0.5t}$, $e^{0.9t}$.
This page intentionally blank.
2. (30 pts.)

1. (5 pts) An orthogonal matrix Q satisfies $Q^T Q = QQ^T = I$. What are the n singular values of Q?

They are all 1. The singular values are the positive square roots of the eigenvalues of $QQ^T = Q^T Q = I$.

2. (10 pts) Let $A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$. Find an SVD, meaning $A = U \Sigma V^T$, where U and V are orthogonal, and $\Sigma = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix}$ is diagonal with $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq 0$. (Be sure that the factorization is correct and satisfies all stated requirements.)

$A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The singular values are in decreasing order and are positive. One can compute AA^T and A^TA, but easier to rig the permutation matrices and correct the sign.
3. (15 pts) The 2×2 matrix $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$, where $\sigma_1 > \sigma_2 > 0$ and both u_1, u_2 and v_1, v_2 are orthonormal bases for \mathbb{R}^2.

The set of all vectors x with $\|x\| = 1$ describes a circle in the plane. What shape best describes the set of all vectors Ax with $\|x\| = 1$? Draw a general picture of that set labeling all the relevant quantities $\sigma_1, \sigma_2, u_1, u_2$ and v_1, v_2. (Hint: Why are u_1, u_2 relevant and v_1, v_2 not relevant?)

The SVD rotates (or reflects) the circle with V^T, scales to an ellipse with axes in the coordinate directions through Σ, and then a rotated ellipse with axes in the direction u_1 and u_2 after U is applied. The Σ scales the x and y axes by σ_1 and σ_2 respectively, and σ_1 is the longer of the two.
This page intentionally blank.
3 (16 pts.)

1. (6 pts) Let \(x \neq 0 \) be a vector in \(\mathbb{R}^3 \). How many eigenvalues of \(A = xx^T \) are positive? zero? negative? (Explain your answer.) (Hint: What is the rank?)

\(A \) is symmetric positive semidefinite and rank 1, so there are 1 positive, 2 zero, and no negative eigenvalues.

2. (6 pts) a) What are the possible eigenvalues of a projection matrix?

0 and 1 (Since \(P^2 = P, \lambda^2 = \lambda \)).

b) True or False: every projection matrix is diagonalizable.

True, every projection matrix is symmetric, hence diagonalizable.

3. (4 pts) True or False: If every eigenvalue of \(A \) is 0, then \(A \) is similar to the zero matrix.

False. A Jordan block with zero eigenvalues is not similar to the zero matrix for \(n > 1 \).
This page intentionally blank.
4 \hspace{1em} (30 \text{ pts.})

Consider the matrix \(A = \begin{pmatrix} \mathbf{x} & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \) with parameter \(x \) in the (1,1) position.

1. (10 pts) Specify all numbers \(x \), if any, for which \(A \) is positive definite. (Explain briefly.)

No \(x \), the matrix is clearly singular with two equal rows and two equal columns.

2. (10 pts) Specify all numbers \(x \), if any, for which \(e^A \) is positive definite. (Explain briefly.)

The eigenvalues of \(e^A \) are the exponentials of the eigenvalues of the matrix \(A \). Since \(A \) is symmetric the eigenvalues are real, and thus exponentials are positive. A symmetric matrix with positive eigenvalues is positive definite.
3. (10 pts) Find an x, if any, for which $4I - A$ is positive definite. (Explain briefly.)

One can take any $x < 3$. The easiest choice is $x = 1$. With this guess the matrix has two eigenvalues 0 and one eigenvalue 3 both less than 4, so $4 - \lambda > 0$ for all three eigenvalues. Systematically, one can consider the three upper left determinants of $4I - A$ which are $4 - x$, $11 - 3x$, and $24 - 8x$. They are all positive if and only if $x < 3$.
This page intentionally blank.