Your PRINTED name is: ____________________________

Please circle your recitation:

1 T 9 Dan Harris E17-401G 3-7775 dmh
2 T 10 Dan Harris E17-401G 3-7775 dmh
3 T 10 Tanya Khovanova E18-420 4-1459 tanya
4 T 11 Tanya Khovanova E18-420 4-1459 tanya
5 T 12 Saul Glasman E18-301H 3-4091 sglasman
6 T 1 Alex Dubbs 32-G580 3-6770 dubbs
7 T 2 Alex Dubbs 32-G580 3-6770 dubbs
This page intentionally blank.
1 (32 pts.) (2 points each)

There are sixteen 2×2 matrices whose entries are either 0 or 1. For each of the sixteen, write down the two singular values. Time saving hint: if you really understand singular values, then there is really no need to compute AA^T or A^TA, but it is okay if you must.
This page intentionally blank.
This page intentionally blank.
This page intentionally blank.
2 (30 pts.) (3 points each: Please circle true or false, and either way, explain briefly.)

a) If A and B are invertible, then so is $(A + B)/2$. True? False? (Explain briefly).

b) If A and B are Markov, then so is $(A + B)/2$. True? False? (Explain briefly).

c) If A and B are positive definite, then so is $(A + B)/2$. True? False? (Explain briefly).

d) If A and B are diagonalizable, then so is $(A + B)/2$. True? False? (Explain briefly).

e) If A and B are rank 1, then so is $(A + B)/2$. True? False? (Explain briefly).
f) If A is symmetric then so is e^A.

True? False? (Explain briefly).

g) If A is Markov then so is e^A.

True? False? (Explain briefly).

h) If A is symmetric, then e^A is positive definite.

True? False? (Explain briefly).

i) If A is singular, then so is e^A.

True? False? (Explain briefly).

j) If A is orthogonal, then so is e^A.

True? False? (Explain briefly).
3 (38 pts.)

Let \(A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \).

a) (10 pts.) Find a nonzero solution \(y(t) \) in \(\mathbb{R}^2 \) to \(\frac{dy}{dt} = Ay \) that is independent of \(t \), in other words, \(y(t) \) is a constant vector in \(\mathbb{R}^2 \). (Hint: why would a vector in the nullspace of \(A \) have this property?)

b) (10 pts.) Show that \(e^{At} \) is Markov for every value of \(t \geq 0 \).
c) (10 pts.) What is the limit of e^{At} as $t \to \infty$?

d) (8 pts.) What is the steady state vector of the Markov matrix e^A?