Recitation 10

The matrix of a linear transformation

Definition 0.1. A *vector space* is a set \(V \) together with operations \(+ : V \times V \to V \) and \(\cdot : \mathbb{R} \times V \to V \) called “addition” and “scalar multiplication,” respectively, satisfying various axioms, which should be intuitive by now.

Definition 0.2. We say that vectors \(v_1, \ldots, v_n \in V \) are *linearly dependent* if there exists \(c_1, \ldots, c_n \in \mathbb{R} \) not all zero, with \(c_1 v_1 + \ldots + c_n v_n = 0 \). If \(v_1, \ldots, v_n \) are not linearly dependent then we say they are *linearly independent*.

Definition 0.3. \(v_1, \ldots, v_n \in V \) are said to be a *basis* for \(V \) if \(v_1, \ldots, v_n \) are linearly independent and any \(v \in V \) can be written as a linear combination of \(v_1, \ldots, v_n \): that is \(v = c_1 v_1 + \ldots + c_n v_n \) for some \(c_1, \ldots, c_n \in \mathbb{R} \).

Definition 0.4. If \(V \) and \(W \) are vector spaces, a *linear transformation* \(T : V \to W \) is a function such that \(T(v + cw) = T(v) + cT(w) \) for any \(v, w \in V \) and \(c \in \mathbb{R} \).

Definition 0.5. Suppose \(V \) and \(W \) are vector spaces with bases \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \), respectively. Then for each \(j \in \{1, \ldots, n\} \), \(T(v_j) \) is a linear combination of the \(w_1, \ldots, w_m \). So there exist

\[
a_{1,j}, \ldots, a_{m,j} \text{ with } T v_j = a_{1,j} w_1 + a_{2,j} w_2 + \ldots + a_{m,j} w_m.
\]

The *matrix of \(T \)* with respect to the bases \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) is the \(m \times n \) matrix \(A \), with entries \(a_{i,j} \).

The most basic example of the matrix of a linear transformation

1. \(\mathbb{R}^n \) is a vector space:

\[
(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n) \text{ and } c(x_1, \ldots, x_n) = (cx_1, \ldots, cx_n).
\]

2. Let \(e_i \in \mathbb{R}^n \) be the vector with 1 in the \(i \)th entry and 0 in the other entries. Then \(e_1, \ldots, e_n \) are linearly independent in \(\mathbb{R}^n \).

3. \(e_1, \ldots, e_n \) is a basis for \(\mathbb{R}^n \).

4. An \(m \times n \) matrix \(A \) defines a linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \) by \(T(x) = Ax \).

5. \(\mathbb{R}^n \) has basis \(e_1, \ldots, e_n \) and \(\mathbb{R}^m \) has basis \(e'_1, \ldots, e'_m \), where we use the prime to highlight the vectors are in \(\mathbb{R}^m \) as opposed to \(\mathbb{R}^n \), but they have an identical definition. We have

\[
A e_j = a_{1,j} e'_1 + a_{2,j} e'_2 + \ldots + a_{m,j} e'_m
\]

and so the matrix of the linear transformation \(T(x) = Ax \) with respect to the bases, \(e_1, \ldots, e_n \) and \(e'_1, \ldots, e'_m \) is \(A \).
Changing basis

Definition 0.6. If V is a vector space and v_1, \ldots, v_n and v'_1, \ldots, v'_n are two bases for V. Then there exists an invertible $n \times n$ matrix B with entries $b_{i,j}$ such that

$$v'_j = b_{1,j}v_1 + b_{2,j}v_2 + \ldots + b_{n,j}v_n.$$

B is said to be the *basis change matrix* from v_1, \ldots, v_n to v'_1, \ldots, v'_n.

Suppose V and W are vector spaces. Suppose that V has bases v_1, \ldots, v_n and v'_1, \ldots, v'_n, that W has bases w_1, \ldots, w_m and w'_1, \ldots, w'_m, and that $T : V \to W$ is a linear transformation.

If T has matrix A with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_m, then T has matrix $C^{-1}AB$ with respect to the bases v'_1, \ldots, v'_n and w'_1, \ldots, w'_m, where B and C denote the basis change matrices from the unprimed bases to the primed bases of V and W, respectively.

The most basic example of changing basis

Suppose A is an $m \times n$ matrix. Then we have seen that the linear transformation $T(v) = Av$ has matrix A with respect to the standard bases e_1, \ldots, e_n and e'_1, \ldots, e'_m. The matrix of T with respect to another pair of bases v_1, \ldots, v_n and w_1, \ldots, w_m is given by $C^{-1}AB$ where

$$B = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} w_1 & \cdots & w_m \end{pmatrix}.$$

SVD

Here is an algorithm that will always work for the SVD.

Suppose you are given an $m \times n$ matrix A.

1. Let $\lambda_1, \ldots, \lambda_i$ be the non-zero eigenvalues of A^TA and $\lambda_{i+1}, \ldots, \lambda_n$ be the zero eigenvalues of $A^T A$. Choose corresponding ORTHONORMAL eigenvectors v_1, \ldots, v_n for $A^T A$.
2. Let $\sigma_j = \sqrt{\lambda_j}$. Let u_1, \ldots, u_i be given by $u_j = Av_j/\sigma_j$.
3. Let u_{i+1}, \ldots, u_m be an ORTHONORMAL basis of $N(AA^T)$.
4. The SVD is

$$\begin{pmatrix} u_1 & \cdots & u_m \end{pmatrix} \Sigma \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}^T$$

where Σ is an $m \times n$ matrix with (j, j)-entry given by σ_j and all other entries 0.

If $m < n$ it is a little quicker to do the following.

1. Let $\lambda_1, \ldots, \lambda_i$ be the non-zero eigenvalues of AA^T and $\lambda_{i+1}, \ldots, \lambda_m$ be the zero eigenvalues of AA^T. Choose corresponding ORTHONORMAL eigenvectors u_1, \ldots, u_m for AA^T.
2. Let $\sigma_j = \sqrt{\lambda_j}$. Let v_1, \ldots, v_i be given by $v_j = A^Tu_j/\sigma_j$.
3. Let v_{i+1}, \ldots, v_n be an ORTHONORMAL basis of $N(A^TA)$.

2
Recitation 10 questions

Question 1

Let \(A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 5 \end{pmatrix} \).

(a) Compute \(A(1,1,1)^T, A(1,1,0)^T, A(1,-1,0)^T \). Write each as a linear combination of the vectors \((1,1)^T\) and \((0,1)^T\).

(b) Find the matrix of the linear transformation \(T(x) = Ax \) with respect to the bases \((1,1,1)^T, (1,1,0)^T, (1,-1,0)^T\) and \((1,1)^T, (0,1)^T\) by using the definition of the matrix of a linear transformation.

(c) Find the matrix of the linear transformation \(T(x) = Ax \) with respect to the bases \((1,1,1)^T, (1,1,0)^T, (1,-1,0)^T\) and \((1,1)^T, (0,1)^T\) by using basis change matrices.

Question 2

Suppose \(A \) is a \(3 \times 2 \) matrix with the property that
\[
A(4,5)^T = (1,2,3)^T \quad \text{and} \quad A(3,4)^T = (3,2,1)^T.
\]

(a) What is the matrix of \(T(x) = Ax \) with respect to the bases
\[
(4,5)^T, (3,4)^T \quad \text{and} \quad (1,2,3)^T, (3,2,1)^T, (0,1,0)^T.
\]

(b) Use the basis change formula to write the matrix you just calculated as \(C^{-1}AB \).

(c) What is \(A \)?

Question 3

Let \(V \) be the set of cubic polynomials
\[
V = \{ f(x) = ax^3 + bx^2 + cx + d : a, b, c, d \in \mathbb{R} \}.
\]

(a) Recall why \(V \) is a vector space; what happens to the coefficients under addition and scalar multiplication?

(b) Define \(T_1(f(x)) = f'(x) \). Is this a linear transformation \(V \longrightarrow V \)? Why?

(c) Define \(T_2(f(x)) = f(x+1) \). Is this a linear transformation \(V \longrightarrow V \)? Why?

(d) Define \(T_3(f(x)) = x^3 f(1/x) \). Is this a linear transformation \(V \longrightarrow V \)? Why?

(e) Recall that 1, \(x, x^2, x^3 \) is a basis for \(V \). Does this make sense to you?

(f) What is \(T_1(1), T_1(x), T_1(x^2), T_1(x^3) \)? What is the matrix of \(T_1 \) with respect to the basis \(1, x, x^2, x^3 \) (using this as a basis for the domain and codomain)?

(g) What is the matrix of \(T_2 \) with respect to the basis \(1, x, x^2, x^3 \)?

(h) What is the matrix of \(T_3 \) with respect to the basis \(1, x, x^2, x^3 \)?

(i) What is the matrix of \(T_1 \) with respect to the basis \(1, x-1, (x-1)(x-2), x(x^2 - \frac{9}{2}x + 6) \)?
Question 4

Let \(A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \).

1. Find the eigenvalues \(\lambda_1 \neq 0, \lambda_2 \) and unit eigenvectors \(v_1, v_2 \) of \(A^T A \).

2. Let \(\sigma_1 = \sqrt{\lambda_1}, u_1 = Av_1/\sigma_1 \). Verify that \(u_1 \) is a unit eigenvector for \(AA^T \) with eigenvalue \(\lambda_1 \).

3. Extend \(u_1 \) to an orthonormal basis \(u_1, u_2 \).

4. Check that

\[
A = (u_1|u_2) \begin{pmatrix} \sigma_1 & 0 \\ 0 & 0 \end{pmatrix} (v_1|v_2)^T.
\]