Your PRINTED name is: ____________________

Please circle your recitation:

Grading

1

2

3

4

Total:

Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to get a full credit. Explain how you obtained the answer.
Problem 1. (a) Do Gram-Schmidt orthogonalization for the vectors \[\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}. \]

(Find an orthogonal basis. Normalization is not required.)

(b) Find the $A = QR$ decomposition for the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

(c) Find the projection of the vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ onto the line spanned by the vector $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

(d) Find the projection of the vector $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ onto the plane $x + y + z = 0$ in \mathbb{R}^3.

(e) Find the least squares solution \hat{x} for the system $\begin{pmatrix} 1 & -1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 10 \\ 0 \end{pmatrix}$.
Problem 2. Let \(A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \).

(a) Calculate the determinant \(\det(A) \).

(b) Explain why \(A \) is an invertible matrix. Find the entry (2, 3) of the inverse matrix \(A^{-1} \).

(c) Notice that all sums of entries in rows of \(A \) are the same. Explain why this implies that \((1, 1, 1)^T \) is an eigenvector of \(A \). What is the corresponding eigenvalue \(\lambda_1 \)?

(d) Find two other eigenvalues \(\lambda_2 \) and \(\lambda_3 \) of \(A \).

(e) Find the projection matrix \(P \) for the projection onto the column space of \(A \).
Problem 3.

(a) Calculate the area of the triangle on the plane \mathbb{R}^2 with the vertices $(1, 0), (0, 1), (3, 3)$ using determinants.

(b) Find all values of x for which the matrix $A = \begin{pmatrix} 1 & x \\ 1 & 1 \end{pmatrix}$ has an eigenvalue equal to 2.

(c) Diagonalize the matrix $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$.

(d) Calculate the power B^{2014} of the matrix $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$.

(e) Let Q be any matrix which is symmetric and orthogonal. Find Q^{2014}. Explain your answer.
Problem 4. Consider the Markov matrix \(A = \begin{pmatrix} 0 & 1/3 & 1/3 & 0 \\ 1/2 & 0 & 1/3 & 1/2 \\ 1/2 & 1/3 & 0 & 1/2 \\ 0 & 1/3 & 1/3 & 0 \end{pmatrix} \).

(a) Three of the eigenvalues of \(A \) are 1, 0, \(-1/3\). Find the fourth eigenvalue of \(A \).

(b) Find the determinant \(\det(A) \).

(c) Find the eigenvector of the transposed matrix \(A^T \) with the eigenvalue \(\lambda_1 = 1 \).

(d) Find the eigenvector of the matrix \(A \) with the eigenvalue \(\lambda_1 = 1 \). (Hint: Notice that nonzero entries in each column of \(A \) are the same.)

(e) Find the limit of \(A^k (1 \ 0 \ 0 \ 0)^T \) as \(k \to +\infty \).
If needed, you can use this extra sheet for your calculations.
If needed, you can use this extra sheet for your calculations.