18.06 Problem Set 10

due Monday, December 01, 2014, before 4:00 pm (sharp deadline) in Room E17-131

The due date is extended till Monday because of Thanksgiving vacation.

Problem 1. Let A be a matrix with SVD $A = U\Sigma V^T$.
(a) Find an SVD of A^T.
(b) Find an SVD of A^{-1} if A is invertible.

Problem 2. Find an SVD for each of the following matrices:
(a) \(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \),
(b) \(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \),
(c) \(\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \).

Problem 3. A matrix can have several different SVDs. Let A be an $n \times n$ matrix with n different singular values $\sigma_1 > \sigma_2 > \cdots > \sigma_n$ (all σ_i’s are distinct and nonzero). Explain why all SVDs $A = U\Sigma V^T$ are obtained from each other by multiplying some columns of U by -1 and simultaneously multiplying the same columns of V by -1.

Problem 4. Find the set of all real numbers u such that the matrix
\[
\begin{pmatrix}
1 & u & 0 \\
u & 1 & u \\
0 & u & 1
\end{pmatrix}
\]
is positive-definite.

Problem 5. If two symmetric matrices A and B are similar, then show that there exists an orthogonal matrix M such that $B = MAM^{-1}$. (Hint: Diagonalize A and B and compare.)

Problem 6. (a) If at least one of the two $n \times n$ matrices A and B is invertible, then show that AB is similar to BA.
(b) Is it true that AB is similar to BA for any two $n \times n$ matrices? (Hint: Find two matrices such that AB is the zero matrix, but BA is not zero.)
Problem 7. Consider the following operations on the (infinite dimensional) space of polynomials \(f(x) \). Which of them are linear transformations?

(a) \(T_1(f) = f(x) + 2 \).
(b) \(T_2(f) = 2f(x) \).
(c) \(T_3(f) = f(x+2) \).
(d) \(T_4(f) = f(2x) \).
(e) \(T_5(f) = f(x^2) \).
(f) \(T_6(f) = (f(x))^2 \).
(g) \(T_7(f) = f''(x) \).
(h) \(T_8(f) = x^2f(x) \).

Problem 8. Let \(V \) be the vector space of quadratic polynomials \(V = \{ ax^2 + bx + c \} \), and \(W \) be the vector space of cubic polynomials \(W = \{ \alpha x^3 + \beta x^2 + \gamma x + \delta \} \).

Let \(T : V \to W \) be the linear transformation given by

\[
T : f(x) \to (2 + x)f(x) + \int_0^x f(t) \, dt.
\]

Find the matrix of \(T \) with respect to the basis \(1, x, x^2 \) of \(V \) and the basis \(1, x, x^2, x^3 \) of \(W \).

Problem 9. Let \(T : V \to V \) be the linear transformation, whose input and output space \(V \) is the space of \(2 \times 2 \) matrices, given by \(T(A) = A^T \). Find the matrix of the linear transformation \(T \) in the basis:

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Problem 10. Consider the subspace of vectors \((x, y, z)\) in \(\mathbb{R}^3 \) such that \(x+y+z = 0 \).
Find a basis for this subspace, and describe the linear transformation

\(T : (x, y, z) \mapsto (y, z, x) \)

on this subspace by a matrix with respect to this basis.