Your PRINTED name is: SOLUTIONS

Please circle your recitation:

(1) M 2 2-131 A. Osorno
 Grading

 1

(2) M 3 2-131 A. Osorno

(3) M 3 2-132 A. Pissarra Pires

 2

(4) T 11 2-132 K. Meszaros

(5) T 12 2-132 K. Meszaros

 3

(6) T 1 2-132 Jerin Gu

 4

(7) T 2 2-132 Jerin Gu

 5

(8)

 6

(9)

 7

(10)

 8

Total:
Problem 1 (10 points)

Let
\[
A = \begin{pmatrix}
3 & 2 & 1 & 1 \\
6 & 6 & 3 & 3 \\
3 & 4 & 2 & 2
\end{pmatrix}.
\]

(a) Calculate the dimensions of the 4 fundamental subspaces associated with \(A \).

(b) Give a basis for each of the 4 fundamental subspaces.

(c) Find the complete solution of the system
\[
A x = \begin{pmatrix}
1 \\
3 \\
2
\end{pmatrix}.
\]

Solution 1

(a) The rank is 2, so the dimensions are:

\[C(A) \sim r = 2 \]
\[C(A^T) \sim r = 2 \]
\[N(A) \sim n - r = 4 - 2 = 2 \]
\[N(A^T) \sim m - r = 3 - 2 = 1. \]

(b) We can get these by elimination or by inspection:

\[C(A) \sim \begin{pmatrix} 3 & 6 & 3 \end{pmatrix}^T, \begin{pmatrix} 2 & 6 & 4 \end{pmatrix}^T \]
\[C(A^T) \sim \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}^T, \begin{pmatrix} 6 & 3 & 3 \end{pmatrix}^T \]
\[N(A) \sim \begin{pmatrix} 0 & -1/2 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} 0 & -1/2 & 0 & 1 \end{pmatrix}^T \]
\[N(A^T) \sim \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}^T \]

(c) \(x = x_{\text{particular}} + x_{\text{nullspace}} = \begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 0 \\ -1/2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ -1/2 \\ 0 \end{pmatrix} \).
Problem 2 (10 points)

Consider the system of linear equations:

\[
\begin{align*}
 x + y + z &= 1 \\
 2x + z &= 2 \\
 -x + y + az &= b
\end{align*}
\]

In parts (a)–(c) below circle correct answers. Explain your answers.

(a) For \(a = 1, b = -1 \), the system has:

(1) exactly one solution

(2) infinitely many solutions

(3) no solutions

(b) For \(a = 0, b = 1 \), the system has:

(1) exactly one solution

(2) infinitely many solutions

(3) no solutions

(c) For \(a = 0, b = -1 \), the system has:

(1) exactly one solution

(2) infinitely many solutions

(3) no solutions

(d) Solve the system for \(a = b = 1 \).

Solution 2

If we eliminate the augmented matrix we get

\[
\begin{pmatrix}
 1 & 1 & 1 & 1 \\
 0 & -2 & -1 & 0 \\
 0 & 0 & a & b + 1
\end{pmatrix}.
\]

(a) **Exactly one solution:** The matrix is invertible.

(b) **No solutions:** Get a row of zeroes in the matrix with no zero in the augmented column.

(c) **Infinitely many solutions:** Get a row of zeroes with a zero in the augmented column.

(d) Using back substitution we get \(x = \begin{pmatrix} 0 & -1 & 2 \end{pmatrix}^T \).
Problem 3 (10 points)

Let L be the line in \mathbb{R}^3 spanned by the vector $(1, 1, 1)^T$. Let P be the projection matrix for the projection onto the line L.

(a) What are the eigenvalues of the matrix P? (Indicate their multiplicities.)

(b) Find an orthonormal basis of the orthogonal complement L^\perp to the line L.

(c) Calculate the projection of the vector $(1, 2, 3)^T$ onto the line L.

(d) Calculate the projection of the vector $(1, 2, 3)^T$ onto the orthogonal complement L^\perp.

Solution 3

(a) P is a projection matrix onto a subspace of dimension 1, so the eigenvalues are 1, 0, 0.

(b) \[
\begin{pmatrix}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{pmatrix},
\begin{pmatrix}
\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{pmatrix}.
\]

(c) $p = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$.

(d) The projection onto L^\perp is $b - p = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.
Problem 4 (10 points)

Let \(A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix} \).

In parts (a)-(c) below circle correct answers. Explain your answers.

(a) The matrix \(A \) is singular: True False

(b) The matrix \(A + 2I \) is singular: True False

(c) The matrix \(A \) is positive definite: True False

(d) Find all eigenvalues of \(A \) and the corresponding eigenvectors.

(e) Find an orthogonal matrix \(Q \) and a diagonal matrix \(\Lambda \) such that \(A = Q\Lambda Q^T \).

(f) Solve the system of differential equations \(\frac{d\mathbf{u}(t)}{dt} = A\mathbf{u}(t), \mathbf{u}(0) = (1, 0, 0)^T \).

Solution 4

(a) True \(\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}^T \) is in the nullspace.

(b) True \(\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}^T \) is in the nullspace.

(c) False The matrix is singular so has 0 as eigenvalue.

(d) \(A \) is singular, so 0 is an eigenvalue with eigenvector \(\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}^T \).

\(A + 2I \) is singular, so -2 is an eigenvalue with eigenvector \(\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}^T \).

We can get the last eigenvalue by looking a the trace: 6. The eigenvector is \(\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T \).

\(A = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix} \).

\(\mathbf{u}(t) = e^{At}\mathbf{u}(0) = Qe^{\Lambda t}Q^T\mathbf{u}(0) = \frac{1}{6} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \frac{1}{2} e^{-2t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{3} e^{6t} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} . \)
Problem 5 (10 points)

Let \(A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{pmatrix} \).

(a) What is the rank of \(A \)?

(b) Calculate the matrix \(A^T A \). Find all its eigenvalues (with multiplicities).

(c) Calculate the matrix \(A A^T \). Find all its eigenvalues (with multiplicities).

(d) Find the matrix \(\Sigma \) in the singular value decomposition \(A = U \Sigma V^T \).

Solution 5

(a) \(1 \)

(b) \(A^T A = \begin{pmatrix} 14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14 \end{pmatrix} \). It was rank 1 so the eigenvalues are 56, 0, 0, 0.

(c) \(A A^T = \begin{pmatrix} 4 & 8 & 12 \\ 8 & 16 & 24 \\ 12 & 24 & 36 \end{pmatrix} \). It was rank 1 so the eigenvalues are 56, 0, 0.

(d) \(\Sigma = \begin{pmatrix} \sqrt{56} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \).
Problem 6 (10 points)

Let A_n be the tridiagonal $n \times n$-matrix with 2's on the main diagonal, 1's immediately above the main diagonal, 3's immediately below the main diagonal, and 0's everywhere else:

$$A_n = \begin{pmatrix}
2 & 1 & 0 & 0 & \cdots & 0 \\
3 & 2 & 1 & 0 & \ddots & 0 \\
0 & 3 & 2 & 1 & \ddots & 0 \\
0 & 0 & 3 & 2 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & 2
\end{pmatrix},$$

(a) Express the determinant $\det(A_n)$ in terms of $\det(A_{n-1})$ and $\det(A_{n-2})$.

(b) Explicitly calculate $\det(A_n)$, for $n = 1, \ldots, 6$.

Solution 6

(a) Using cofactors twice we get $\det(A_n) = 2 \det(A_{n-1}) - 3 \det(A_{n-2})$.

(b) $\det(A_1) = \det[2] = 2$.

$\det(A_2) = \det \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = 1.$

$\det(A_3) = 2 \cdot 1 - 3 \cdot 2 = -4.$

$\det(A_4) = 2 \cdot (-4) - 3 \cdot 1 = -11.$

$\det(A_5) = 2 \cdot (-11) - 3 \cdot (-4) = -10.$

$\det(A_6) = 2 \cdot (-10) - 3 \cdot (-11) = 13.$
Problem 7 (10 points)

Calculate the determinant of the following 6×6-matrix:

$$A = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1
\end{pmatrix}$$

Solution 7

This determinant could be computed using cofactors or doing row operations to simplify and then cofactors. It could also be computed as follows.

$$A = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}.$$

P is a permutation matrix with determinant -1.

$$B = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix} - I.$$

The eigenvalues of the matrix with all 1’s are 6, 0, 0, 0, 0, 0 so the eigenvalues of B are 5, -1, -1, -1, -1, -1, so the determinant of B is -5.

Thus the determinant of A is 5.
Problem 8 (10 points)

(a) Calculate A^{100} for $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$.

(b) Calculate B^{100} for $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

(c) What will happen with the house (shown below) when we apply the linear transformation $T(v) = Bv$ for $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$? Will it be dilated? Draw the picture of the transformed house.

Solution 8

(a) $A^2 = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$ so $A^{100} = \begin{pmatrix} 5^{100} & 0 \\ 0 & 5^{100} \end{pmatrix}$.

(b) $B^4 = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$ so $B^{100} = \begin{pmatrix} (-4)^{25} & 0 \\ 0 & (-4)^{25} \end{pmatrix} = \begin{pmatrix} -4^{25} & 0 \\ 0 & -4^{25} \end{pmatrix}$.

(c) From part (b) we see that B^4 is stretching by 4 and rotating by π. Thus B is rotating by $\pi/4$ and stretching by $\sqrt{2}$.