18.06 Problem Set 3

Due Wednesday, 25 February 2008 at 4pm in 2-106.

1. Consider the matrix
 \[A = \begin{pmatrix} 1 & 2 & 1 & 4 & 1 \\ 2 & 6 & 3 & 11 & 1 \\ 1 & 4 & 2 & 7 & 0 \end{pmatrix} \]

 (a) Reduce \(A \) to echelon form \(U \), find a special solution for each free variable, and hence describe all solutions to \(Ax = 0 \).

 (b) By further row operations on \(U \), find the reduced echelon form \(R \).

 (c) True or false: \(N(R) = N(U) \)?

 (d) True or false: \(C(A) = C(U) \)?

2. If you do column elimination steps (instead of row eliminations) on a matrix \(A \) to get some other matrix \(U \) (like in problem 6 of pset 1), does \(N(A) = N(U) \)? Come up with a counter-example if false, or give an explanation why this should always hold if true.

3. Suppose that column 3 of a \(4 \times 6 \) matrix is all zero. Then \(x_3 \) must be a ___________ variable. Give one special solution for this matrix.

4. Fill in the missing numbers to make the matrix \(A \) rank 1, rank 2, and rank 3. (i.e. your solution should be three matrices).
 \[A = \begin{pmatrix} _ & _ & _ & _ & _ & _ \\ _ & _ & _ & _ & _ & _ \\ _ & _ & _ & _ & _ & _ \end{pmatrix} \]

5. Suppose \(A \) and \(B \) have the same reduced echelon form \(R \). Therefore \(A \) equals a/an ___________ matrix multiplying \(B \) on the ________ (left or right).

6. Write the complete solution (i.e. a particular solution plus all nullspace vectors) to the system:
 \[\begin{pmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{pmatrix} x = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} . \]

7. Explain why these statements are all false by giving a counter-example for each:

 (a) A system \(Ax = b \) has at most one particular solution.

 (b) A system \(Ax = b \) has at least one particular solution.

 (c) If there is only one special solution \(x_n \) in the nullspace and there exists some particular solution \(x_p \), then the complete solution to \(Ax = b \) is any linear combination of \(x_p \) and \(x_n \).

 (d) If \(A \) is invertible then there is no solution \(x_n \) the nullspace.

 (e) The solution \(x_p \) with all free variables set to zero is the “shortest” solution (minimizing \(||x|| \)).

8. If \(A \) is a \(3 \times 7 \) matrix, its largest possible rank is ________. In this case, there is a pivot in every _________ of \(U \) and \(R \), the solution to \(Ax = b \) ________ (always exists or is unique), and the column space of \(A \) is _________. Construct an example of such a matrix \(A \).

9. If \(A \) is a \(6 \times 3 \) matrix, its largest possible rank is ________. In this case, there is a pivot in every _________ of \(U \) and \(R \), the solution to \(Ax = b \) ________ (always exists or is unique), and the nullspace of \(A \) is _________. Construct an example of such a matrix \(A \).
10. Find the rank of A, $A^T A$, and AA^T, for $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 2 \end{pmatrix}$.

11. Choose three independent columns of $A = \begin{pmatrix} 2 & 3 & 4 & 1 \\ 4 & 12 & 15 & 2 \\ 0 & 0 & 0 & 9 \\ 0 & 6 & 7 & 0 \end{pmatrix}$. Then choose a different three independent columns. Explain whether either of these choices forms a basis for $C(A)$.

12. Find a basis for the space of 2×3 matrices whose nullspace contains $(1, 2, 0)$.

13. Make the matrix $A = \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}$ in Matlab by the command:

```
>> A = [2 1; 6 3]
```

Then compute $b = Ax$ for 100 random x vectors by the command:

```
>> br = A * rand(2, 100);
```

Plot these b vectors as black dots by the commands:

```
>> plot(br(1,:), br(2,:), 'k.')
```

What is the pattern, and why?