Your PRINTED name is: ________________

Please circle your recitation:

<table>
<thead>
<tr>
<th>Recitation</th>
<th>Time</th>
<th>Session</th>
<th>Name</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>r01</td>
<td>T 11</td>
<td>4-159</td>
<td>Ailsa Keating</td>
<td>ailsa</td>
</tr>
<tr>
<td>r02</td>
<td>T 11</td>
<td>36-153</td>
<td>Rune Haugseng</td>
<td>haugseng</td>
</tr>
<tr>
<td>r03</td>
<td>T 12</td>
<td>4-159</td>
<td>Jennifer Park</td>
<td>jmypark</td>
</tr>
<tr>
<td>r04</td>
<td>T 12</td>
<td>36-153</td>
<td>Rune Haugseng</td>
<td>haugseng</td>
</tr>
<tr>
<td>r05</td>
<td>T 1</td>
<td>4-153</td>
<td>Dimiter Ostrev</td>
<td>ostrev</td>
</tr>
<tr>
<td>r06</td>
<td>T 1</td>
<td>4-159</td>
<td>Uhi Rinn Suh</td>
<td>ursuh</td>
</tr>
<tr>
<td>r07</td>
<td>T 1</td>
<td>66-144</td>
<td>Ailsa Keating</td>
<td>ailsa</td>
</tr>
<tr>
<td>r08</td>
<td>T 2</td>
<td>66-144</td>
<td>Niels Martin Moller</td>
<td>moller</td>
</tr>
<tr>
<td>r09</td>
<td>T 2</td>
<td>4-153</td>
<td>Dimiter Ostrev</td>
<td>ostrev</td>
</tr>
<tr>
<td>r10</td>
<td>ESG</td>
<td></td>
<td>Gabrielle Stoy</td>
<td>gstoy</td>
</tr>
</tbody>
</table>
(a) Find the projection p of the vector b onto the plane of a_1 and a_2, when

\[
b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad a_1 = \begin{bmatrix} 1 \\ 7 \\ 1 \\ 7 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 7 \\ 1 \\ -7 \end{bmatrix}.
\]

(b) What projection matrix P will produce the projection $p = Pb$ for every vector b in \mathbb{R}^4?
(c) What is the determinant of $I - P$? Explain your answer.

(d) What are all nonzero eigenvectors of P with eigenvalue $\lambda = 1$?

How is the number of independent eigenvectors with $\lambda = 0$ of an $n \times n$ square matrix A connected to the rank of A?

(You could answer (c) and (d) even if you don’t answer (b).)
This page intentionally blank.
2 (30 pts.)

(a) Suppose the matrix A factors into $A = PLU$ with a permutation matrix P, and 1’s on the diagonal of L (lower triangular) and pivots d_1, \ldots, d_n on the diagonal of U (upper triangular).

What is the determinant of A? EXPLAIN WHAT RULES YOU ARE USING.

(b) Suppose the first row of a new matrix A consists of the numbers $1, 2, 3, 4$. Suppose the cofactors C_{ij} of that first row are the numbers $2, 2, 2, 2$.

(Cofactors already include the ± signs.)

Which entries of A^{-1} does this tell you and what are those entries?
(c) What is the determinant of the matrix $M(x)$? For which values of x is the determinant equal to zero?

$$M(x) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & x \\
1 & 1 & 4 & x^2 \\
1 & -1 & 8 & x^3
\end{bmatrix}.$$
This page intentionally blank.
3 (30 pts.)

(a) Starting from independent vectors \(a_1 \) and \(a_2 \), use Gram-Schmidt to find formulas for two orthonormal vectors \(q_1 \) and \(q_2 \) (combinations of \(a_1 \) and \(a_2 \)):

\[q_1 = \]

\[q_2 = \]

(b) The connection between the matrices \(A = [a_1 \ a_2] \) and \(Q = [q_1 \ q_2] \) is often written \(A = QR \). From your answer to Part (a), what are the entries in this matrix \(R \)?
(c) The least squares solution \hat{x} to the equation $Ax = b$ comes from solving what equation?

If $A = QR$ as above, show that $R \hat{x} = Q^T b$.
This page intentionally blank.