Please PRINT your name ____________________________ 1.

Please Circle your Recitation: 3.

<table>
<thead>
<tr>
<th>Recitation</th>
<th>Time</th>
<th>Section</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>T 10</td>
<td>36-156</td>
<td>Russell Hewett</td>
</tr>
<tr>
<td>r2</td>
<td>T 11</td>
<td>36-153</td>
<td>Russell Hewett</td>
</tr>
<tr>
<td>r3</td>
<td>T 11</td>
<td>24-407</td>
<td>John Lesieutre</td>
</tr>
<tr>
<td>r4</td>
<td>T 12</td>
<td>36-153</td>
<td>Stephen Curran</td>
</tr>
<tr>
<td>r5</td>
<td>T 12</td>
<td>24-407</td>
<td>John Lesieutre</td>
</tr>
<tr>
<td>r6</td>
<td>T 1</td>
<td>36-153</td>
<td>Stephen Curran</td>
</tr>
<tr>
<td>r7</td>
<td>T 1</td>
<td>36-144</td>
<td>Vinoth Nandakumar</td>
</tr>
<tr>
<td>r8</td>
<td>T 1</td>
<td>24-307</td>
<td>Aaron Potechin</td>
</tr>
<tr>
<td>r9</td>
<td>T 2</td>
<td>24-307</td>
<td>Aaron Potechin</td>
</tr>
<tr>
<td>r10</td>
<td>T 2</td>
<td>36-144</td>
<td>Vinoth Nandakumar</td>
</tr>
<tr>
<td>r11</td>
<td>T 3</td>
<td>36-144</td>
<td>Jennifer Park</td>
</tr>
</tbody>
</table>

(1) (40 pts)

(a) If P projects every vector b in \mathbb{R}^5 to the nearest point in the subspace spanned by $a_1 = (1, 0, 1, 0, 4)$ and $a_2 = (2, 0, 0, 0, 4)$, what is the rank of P and why?

(b) If these two vectors are the columns of the 5 by 2 matrix A, which of the four fundamental subspaces for A is the nullspace of P?

(c) By Gram-Schmidt find an orthonormal basis for the column space of A (spanned by a_1 and a_2).

(d) If P is any (symmetric) projection matrix, show that $Q = I - 2P$ is an orthogonal matrix.
(2) (30 pts.)

(a) Find the determinant of the matrix A

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}.$$

(b) The absolute value of $\det A$ tells you the volume of a box in \mathbb{R}^4. Describe that box (2 points – describe a different box with the same volume).

(c) Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that reduced matrix is not invertible, what fact does that tell you about A^{-1}?
This 4 by 4 Hadmard matrix is an orthogonal matrix. Its columns are orthogonal unit vectors.

\[
Q = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1
\end{bmatrix} = \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{bmatrix}
\]

(a) What projection matrix \(P_4 \) (give numbers) will project every \(b \) in \(\mathbb{R}^4 \) onto the line through \(q_4 \)?

(b) What projection matrix \(P_{123} \) will project every \(b \) in \(\mathbb{R}^4 \) onto the subspace spanned by \(q_1, q_2, \) and \(q_3 \)? Remember that those columns are orthogonal.

(c) Suppose \(A \) is the 4 by 3 matrix whose columns are \(q_1, q_2, q_3 \). Find the least-squares solution \(\hat{x} \) to the four equations

\[
Ax = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix} = b.
\]

What is the error vector \(e \)?