(1) (40 pts)

In all of this problem, the 3 by 3 matrix A has eigenvalues $\lambda_1, \lambda_2, \lambda_3$ with independent eigenvectors x_1, x_2, x_3.

(a) What are the trace of A and the determinant of A?

(b) Suppose: $\lambda_1 = \lambda_2$. Choose the true statement from 1, 2, 3:

1. A can be diagonalized. Why?
2. A can not be diagonalized. Why?
3. I need more information to decide. Why?

(c) From the eigenvalues and eigenvectors, how could you find the matrix A? Give a formula for A and explain each part carefully.

(d) Suppose $\lambda_1 = 2$ and $\lambda_2 = 5$ and $x_1 = (1, 1, 1)$ and $x_2 = (1, -2, 1)$. Choose λ_3 and x_3 so that A is symmetric positive semidefinite but not positive definite.
(2) (30 pts.)

Suppose A has eigenvalues $1, \frac{1}{3}, \frac{1}{2}$ and its eigenvectors are the columns of S:

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{with} \quad S^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

(a) What are the eigenvalues and eigenvectors of A^{-1}?

(b) What is the general solution (with 3 arbitrary constants c_1, c_2, c_3) to the differential equation $du/dt = Au$? Not enough to write e^{At}. Use the c’s.

(c) Start with the vector $u = (1, 4, 3)$ from adding up the three eigenvectors:

$u = x_1 + x_2 + x_3$. Think about the vector $v = A^k u$ for VERY large powers k.

What is the limit of v as $k \to \infty$?
(3) (30 pts.)

(a) For a really large number \(N \), will this matrix be positive definite? Show why or why not.

\[
A = \begin{bmatrix}
2 & 4 & 3 \\
4 & N & 1 \\
3 & 1 & 4
\end{bmatrix}.
\]

(b) Suppose: \(A \) is positive definite symmetric
\(Q \) is orthogonal (same size as \(A \))
\(B \) is \(Q^T AQ = Q^{-1} AQ \)

Show that: 1. \(B \) is also symmetric.
2. \(B \) is also positive definite.

(c) If the SVD of \(A \) is \(U \Sigma V^T \), how do you find the orthogonal \(V \) and the diagonal \(\Sigma \) from the matrix \(A \)?