Your PRINTED Name is:

Please CIRCLE your section:

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Room</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01</td>
<td>T10</td>
<td>26-302</td>
<td>Dmitry Vaintrob</td>
</tr>
<tr>
<td>R02</td>
<td>T10</td>
<td>26-322</td>
<td>Francesco Lin</td>
</tr>
<tr>
<td>R03</td>
<td>T11</td>
<td>26-302</td>
<td>Dmitry Vaintrob</td>
</tr>
<tr>
<td>R04</td>
<td>T11</td>
<td>26-322</td>
<td>Francesco Lin</td>
</tr>
<tr>
<td>R05</td>
<td>T11</td>
<td>26-328</td>
<td>Laszlo Lovasz</td>
</tr>
<tr>
<td>R06</td>
<td>T12</td>
<td>36-144</td>
<td>Michael Andrews</td>
</tr>
<tr>
<td>R07</td>
<td>T12</td>
<td>26-302</td>
<td>Netanel Blaier</td>
</tr>
<tr>
<td>R08</td>
<td>T12</td>
<td>26-328</td>
<td>Laszlo Lovasz</td>
</tr>
<tr>
<td>R09</td>
<td>T1pm</td>
<td>26-302</td>
<td>Sungyoon Kim</td>
</tr>
<tr>
<td>R10</td>
<td>T1pm</td>
<td>36-144</td>
<td>Tanya Khovanova</td>
</tr>
<tr>
<td>R11</td>
<td>T1pm</td>
<td>26-322</td>
<td>Jay Shah</td>
</tr>
<tr>
<td>R12</td>
<td>T2pm</td>
<td>36-144</td>
<td>Tanya Khovanova</td>
</tr>
<tr>
<td>R13</td>
<td>T2pm</td>
<td>26-322</td>
<td>Jay Shah</td>
</tr>
<tr>
<td>R14</td>
<td>T3pm</td>
<td>26-322</td>
<td>Carlos Sauer</td>
</tr>
<tr>
<td>ESG</td>
<td></td>
<td></td>
<td>Gabrielle Stoy</td>
</tr>
</tbody>
</table>

Grading

1:

2:

3:

1. (33 points)

(a) Suppose A has the eigenvalues $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$ with eigenvectors x_1, x_2, x_3 in the columns of this $S = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$:

$$S = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}.$$

What are the eigenvalues and eigenvectors of the matrix $B = A^9 + I$?

(b) How could you find that matrix $B = A^9 + I$ using the eigenvectors in S and the eigenvalues 1, 0, −1?

(c) Give a reason why the matrix B does have or doesn’t have each of these properties:

i. B is invertible

ii. B is symmetric

iii. trace = $B_{11} + B_{22} + B_{33} = 3$.

2. (33 points)

(a) Show that \(\lambda_1 = 0 \) is an eigenvalue of \(A \) and find an eigenvector \(x_1 \) with that zero eigenvalue:

\[
A = \begin{bmatrix}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{bmatrix}
\]

(b) Find the other eigenvalues \(\lambda_2 \) and \(\lambda_3 \) of this symmetric matrix. Does \(A \) have two more independent eigenvectors \(x_2 \) and \(x_3 \)? Give a reason why or why not. (Not required to find \(x_2 \) and \(x_3 \).)

(c) Suppose \(\frac{du}{dt} = Au \) starts from \(u(0) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \).

Explain why this \(u(t) \) approaches a steady state \(u(\infty) \) as \(t \to \infty \). You can use the general formula

\[
u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2 + c_3 e^{\lambda_3 t} x_3
\]
or

\[
e^{At} = Se^{\Lambda t}S^{-1}
\]

without putting in all eigenvectors. Find that steady state \(u(\infty) \).
3. (34 points)

(a) If C is any symmetric matrix, show that e^C is a positive definite matrix. We can see that e^C is symmetric — which test will you use to show that e^C is positive definite?

(b) A is a 3 by 3 matrix. Suppose v_1, v_2, v_3 are orthonormal eigenvectors (with eigenvalues 1, 2, 3) of the symmetric matrix $A^T A$. Show that Av_1, Av_2, Av_3 are orthogonal by rewriting and simplifying $(Av_i)^T (Av_j)$.

(c) For the 3 by 3 matrix A in part (b), find three matrices U, Σ, V that go into the Singular Value Decomposition $A = U \Sigma V^T$.

(d) True or False: If A is any symmetric 4 by 4 matrix and M is any invertible 4 by 4 matrix, then $B = M^{-1} AM$ is also symmetric. Give a reason for true or false.