Your PRINTED Name is: ________________________________

Please CIRCLE your section:

Grading 1:

2:

3:

4:

5:

6:

7:

8:

R01 T10 26-302 Dmitry Vaintrob
R02 T10 26-322 Francesco Lin
R03 T11 26-302 Dmitry Vaintrob
R04 T11 26-322 Francesco Lin
R05 T11 26-328 Laszlo Lovasz
R06 T12 36-144 Michael Andrews
R07 T12 26-302 Netanel Blaier
R08 T12 26-328 Laszlo Lovasz
R09 T1pm 26-302 Sungyoon Kim
R10 T1pm 36-144 Tanya Khovanova
R11 T1pm 26-322 Jay Shah
R12 T2pm 36-144 Tanya Khovanova
R13 T2pm 26-322 Jay Shah
R14 T3pm 26-322 Carlos Sauer
ESG 26-328 Gabrielle Stoy

Thank you for taking 18.06! I hope you have a wonderful summer!
EACH PART OF EACH QUESTION IS 5 POINTS.

1. (a) Find the reduced row echelon form $R = \text{rref}(A)$ for this matrix A:

\[
A = \begin{bmatrix}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{bmatrix}.
\]

(b) Find a basis for the column space $C(A)$.

(c) Find all solutions (and first tell me the conditions on b_1, b_2, b_3 for solutions to exist!).

\[
Ax = \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}.
\]
2. (a) What is the 3 by 3 projection matrix P_a onto the line through $a = (2, 1, 2)$?

(b) Suppose P_v is the 3 by 3 projection matrix onto the line through $v = (1, 1, 1)$. Find a basis for the column space of the matrix $A = P_aP_v$ (product of 2 projections)
3. Suppose I give you an orthonormal basis \(q_1, \ldots, q_4 \) for \(\mathbf{R}^4 \) and an orthonormal basis \(z_1, \ldots, z_6 \) for \(\mathbf{R}^6 \). From these you create the 6 by 4 matrix \(A = z_1 q_1^T + z_2 q_2^T \).

(a) Find a basis for the nullspace of \(A \).

(b) Find a particular solution to \(Ax = z_1 \) and find the complete solution.

(c) Find \(A^T A \) and find an eigenvector of \(A^T A \) with \(\lambda = 1 \).
4. Symmetric positive definite matrices H and orthogonal matrices Q are the most important. Here is a great theorem: *Every square invertible matrix A can be factored into $A = HQ$.*

(a) Start from $A = U \Sigma V^T$ (the SVD) and choose $Q = UV^T$. Find the other factor H so that $U \Sigma V^T = HQ$. Why is your H symmetric and why is it positive definite?

(b) Factor this 2 by 2 matrix into $A = U \Sigma V^T$ and then into $A = HQ$:

\[
A = \begin{bmatrix}
1 & 3 \\
-1 & 3 \\
\end{bmatrix} = U \Sigma V^T = HQ
\]
5. (a) Are the vectors $(0, 1, 1), (1, 0, 1), (1, 1, 0)$ independent or dependent?
(b) Suppose T is a linear transformation with input space = output space = \mathbb{R}^3. We have a basis u, v, w for \mathbb{R}^3 and we know that $T(u) = v + w, T(v) = u + w, T(w) = u + v$. Describe the transformation T^2 by finding $T^2(u)$ and $T^2(v)$ and $T^2(w)$.
6. Suppose A is a 3 by 3 matrix with eigenvalues $\lambda = 0, 1, -1$ and corresponding eigenvectors x_1, x_2, x_3.

(a) What is the rank of A? Describe all vectors in its column space $C(A)$.
(b) How would you solve $\frac{du}{dt} = Au$ with $u(0) = (1, 1, 1)$?
(c) What are the eigenvalues and determinant of e^A?
7. (a) Find a 2 by 2 matrix such that

\[
A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad \text{and also} \quad A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
\]

or say why such a matrix can’t exist.

(b) The columns of this matrix \(H \) are orthogonal but not orthonormal:

\[
H = \begin{bmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -3 & 1
\end{bmatrix}
\]

Find \(H^{-1} \) by the following procedure. First multiply \(H \) by a diagonal matrix \(D \) that makes the columns orthonormal. Then invert. Then account for the diagonal matrix \(D \) to find the 16 entries of \(H^{-1} \).
8. (a) Factor this symmetric matrix into $A = U^T U$ where U is upper triangular:

$$A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{bmatrix}.$$

(b) Show by two different tests that A is symmetric positive definite.

(c) Find and explain an upper bound on the eigenvalues of A. Find and explain a (positive) lower bound on those eigenvalues if you know that

$$A^{-1} = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{bmatrix}.$$
Scrap Paper