Your PRINTED Name is: ________________________________

Please CIRCLE your section:

Grading

1: ________________________________

2: ________________________________

3: ________________________________

4: ________________________________

5: ________________________________

6: ________________________________

7: ________________________________

8: ________________________________

R01 T10 26-302 Dmitry Vaintrob
R02 T10 26-322 Francesco Lin
R03 T11 26-302 Dmitry Vaintrob
R04 T11 26-322 Francesco Lin
R05 T11 26-328 Laszlo Lovasz
R06 T12 36-144 Michael Andrews
R07 T12 26-302 Netanel Blaier
R08 T12 26-328 Laszlo Lovasz
R09 T1pm 26-302 Sungyoon Kim
R10 T1pm 36-144 Tanya Khovanova
R11 T1pm 26-322 Jay Shah
R12 T2pm 36-144 Tanya Khovanova
R13 T2pm 26-322 Jay Shah
R14 T3pm 26-322 Carlos Sauer
ESG Gabrielle Stoy

Thank you for taking 18.06! I hope you have a wonderful summer!
EACH PART OF EACH QUESTION IS 5 POINTS.

1. (a) Find the reduced row echelon form \(R = \text{rref}(A) \) for this matrix \(A \):

\[
A = \begin{bmatrix}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{bmatrix}.
\]

Solution. We have

\[
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

The last matrix is the RREF.

(b) Find a basis for the column space \(C(A) \).

Solution. We can see that the pivot columns are columns 1 and 3, so these columns from the original matrix form a basis,

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
\]

(c) Find all solutions (and first tell me the conditions on \(b_1, b_2, b_3 \) for solutions to exist!).

\[
Ax = \begin{bmatrix} b_1 \\
b_2 \\
b_3 \end{bmatrix}.
\]

Solution. We can see that we need \(b_2 = b_3 \). First, let us find a particular solution. Since \(x_2, x_4 \) are free variables, we can set them to 0, and then we can solve to get

\[
\begin{pmatrix}
b_1 - b_2 \\
0 \\
b_2 \\
0
\end{pmatrix}.
\]

Now, we need a basis for the nullspace, the special solutions. Setting each free variable to 1 and the other to 0, we obtain the special
solutions
\[
\begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
0 \\
-2 \\
1
\end{pmatrix}
\]

So, the general solutions are given by vectors
\[
\begin{pmatrix}
b_1 - b_2 \\
0 \\
b_2 \\
0
\end{pmatrix} + c_1 \begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix} + c_2 \begin{pmatrix}
0 \\
0 \\
-2 \\
1
\end{pmatrix}
\]
2. (a) What is the 3 by 3 projection matrix P_a onto the line through $a = (2, 1, 2)$?

Solution.

$$P_a = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix}$$

(b) Suppose P_v is the 3 by 3 projection matrix onto the line through $v = (1, 1, 1)$. Find a basis for the column space of the matrix $A = P_a P_v$ (product of 2 projections)

Solution. $P_a P_v = P_a v = \frac{5}{9}a$ and so $a \in C(P_a P_v) \subset C(P_a)$. Since $C(P_a)$ is spanned by a, a basis for $C(P_a P_v)$ is given by \{a\}.
3. Suppose I give you an orthonormal basis q_1, \ldots, q_4 for \mathbb{R}^4 and an orthonormal basis z_1, \ldots, z_6 for \mathbb{R}^6. From these you create the 6 by 4 matrix $A = z_1 q_1^T + z_2 q_2^T$.

(a) Find a basis for the nullspace of A.

Solution. The matrix has SVD ZJQ^T where J is the 6 by 4 matrix with diagonal entries $(1, 1, 0, 0)$. This means that its nullspace consists of the q’s in columns of Q corresponding to zero singular values, which is q_3, q_4.

(b) Find a particular solution to $Ax = z_1$ and find the complete solution.

Solution. One particular solution to $Ax_1 = q_1$, since $(z_1 q_1^T)q_1 = z_1(q_1 \cdot q_1) = z_1$, by and $(z_2 q_2^T)q_1 = z_2(q_2^T q_1) = z_1(q_2 \cdot q_1) = 0$ by orthonormality of q_i. The complete solution is obtained by adding an element of the nullspace, i.e. a linear combination of basis vectors of the nullspace: $q_1 + cq_2 + dq_4$ for scalars c, d.

(c) Find $A^T A$ and find an eigenvector of $A^T A$ with $\lambda = 1$.

Solution. $A^T A = (q_1 z_1^T + q_2 z_2^T)(z_1 q_1^T + z_2 q_2^T)$. Expanding and reparenthezising gives $A^T A = q_1(z_1^T z_1)q_1^T + q_1(z_1^T z_2)q_2^T + q_2(z_2^T z_2)q_2^T$. In every term, the parenthesized scalar in the middle is a dot product: $z_1 \cdot z_2 = 0$ for the middle two terms and 1 for the first and fourth terms, leaving $A^T A = q_1 q_1^T + q_2 q_2^T$. We see that $A^T A q_1 = q_1(q_1 \cdot q_1) + q_2(q_2 \cdot q_1) = q_1$ and, for the same reason, $A^T A q_2 = q_2$. So q_1 and q_2 (or any nonzero linear combination) are all eigenvectors with eigenvalue 1.
4. Symmetric positive definite matrices H and orthogonal matrices Q are the most important. Here is a great theorem: *Every square invertible matrix A can be factored into $A = HQ$.*

(a) Start from $A = UΣV^T$ (the SVD) and choose $Q = UV^T$. Find the other factor H so that $UΣV^T = HQ$. Why is your H symmetric and why is it positive definite?

Solution. By definition we need $UΣV^T = A = HQ = HUV^T$ so we get by inverting U and V^T (which are orthogonal hence invertible) that $H = UΣU^{-1}$. The last item can also be written as $UΣU^T$ because U is orthogonal. This matrix is symmetric because $H^T = (UΣU^T)^T = UΣ^TU^T = H$ as $Σ$ is diagonal so it is equal to its own transpose. To see that it is positive definite we can use the eigenvalue test: the eigenvalues of H are given by the diagonal elements of $Σ$, i.e. the singular values of A. They are all *nonnegative* because they are the eigenvalues of A^TA, and they cannot be zero because A is invertible by assumption. Hence the eigenvalues of H are all positive.

(b) Factor this 2 by 2 matrix into $A = UΣV^T$ and then into $A = HQ$:

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 3 \end{bmatrix} = UΣV^T = HQ$$

Solution. We have $A^TA = \begin{bmatrix} 2 & 0 \\ 0 & 18 \end{bmatrix}$ so the singular values are $σ_1 = \sqrt{18} = 3\sqrt{2}$ and $σ_2 = \sqrt{2}$ and the corresponding eigenvectors are $v_1 = (0, 1)$ and $v_2 = (1, 0)$ so that $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. We then have

$$u_1 = Av_1/σ_1 = (1/\sqrt{2}, 1/\sqrt{2}) \quad u_2 = Av_2/σ_2 = (1/\sqrt{2}, -1/\sqrt{2}),$$

so the SVD is

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Finally

$$H = UΣU^T = \begin{bmatrix} 2\sqrt{2} & \sqrt{2} \\ \sqrt{2} & 2\sqrt{2} \end{bmatrix} \quad Q = UV^T = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}. $$
5. (a) Are the vectors $(0, 1, 1), (1, 0, 1), (1, 1, 0)$ independent or dependent?

Solution. These vectors are independent. One way to see this is that

$$\det \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 2 \neq 0$$

(b) Suppose T is a linear transformation with input space = output space = \mathbb{R}^3. We have a basis u, v, w for \mathbb{R}^3 and we know that $T(u) = v + w, T(v) = u + w, T(w) = u + v$. Describe the transformation T^2 by finding $T^2(u)$ and $T^2(v)$ and $T^2(w)$.

Solution. We have

$$T^2(u) = T(v + w) = T(v) + T(w) = 2u + v + w$$

$$T^2(v) = T(u + w) = T(u) + T(w) = u + 2v + w$$

$$T^2(w) = T(u + v) = T(u) + T(v) = u + v + 2w$$

Note that this means that in the basis (u, v, w), the matrix of T^2 is

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
6. Suppose A is a 3 by 3 matrix with eigenvalues $\lambda = 0, 1, -1$ and corresponding eigenvectors x_1, x_2, x_3.

(a) What is the rank of A? Describe all vectors in its column space $C(A)$.

Solution. Vectors $x_1, x_2,$ and x_3 are independent. Any vector y in \mathbb{R}^3 can be represented as a linear combination of the eigenvectors: $y = ax_1 + bx_2 + cx_3$. Applying A we get $Ay = bx_2 - cx_3$. Thus x_2 and x_3 form a basis in the column space and the rank of A is 2.

(b) How would you solve $du/dt = Au$ with $u(0) = (1, 1, 1)$?

Solution. By the formula $u(t) = c_1 e^{\lambda_1 t} x_1 + \cdots + c_n e^{\lambda_n t} x_n$, where λ_i are eigenvalues and x_i the corresponding eigenvectors. We are given λ_i and x_i, so we can plug them in to get: $u(t) = c_1 e^{0t} x_1 + c_2 e^{t} x_2 + c_3 e^{-t} x_3 = c_1 x_1 + c_2 e^{t} x_2 + c_3 e^{-t} x_3$. To find the coefficients c_1, c_2, and c_3, we need to use the initial conditions, that is to solve the equation: $u(0) = (1, 1, 1) = c_1 x_1 + c_2 x_2 + c_3 x_3$.

(c) What are the eigenvalues and determinant of e^A?

Solution. The eigenvalues of e^A are the same as the eigenvalues of e^Λ, where Λ is the diagonalization of A. Therefore, the eigenvalues of e^A equal e to the power of the eigenvalues of A: $e^0 = 1$, $e^1 = e$ and $e^{-1} = 1/e$. The determinant is the product of the eigenvalues and is equal to $1 \cdot e \cdot 1/e = 1$.

8
7. (a) Find a 2 by 2 matrix such that
\[
A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ and also } A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
\]
or say why such a matrix can’t exist.

Solution. \(A = \begin{bmatrix} 1/3 & 1/3 \\ 4/3 & 4/3 \end{bmatrix} \) is the 2 by 2 matrix such that \(A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \) and \(A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \). One way to arrive at \(A \) is to let \(B = \begin{bmatrix} 3/4 & 3/4 \\ 4/4 & 4/4 \end{bmatrix} \) be the matrix which sends the standard basis vectors \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) both to \(\begin{bmatrix} 3 \\ 4 \end{bmatrix} \) and let \(C = \begin{bmatrix} 1/2 & 2/1 \\ 1/2 & 1/2 \end{bmatrix} \) be the change of basis matrix which sends the standard basis vectors to \(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \). Then \(A = BC^{-1} \).

(b) The columns of this matrix \(H \) are orthogonal but not orthonormal:
\[
H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -3 & 1 \end{bmatrix}
\]
Find \(H^{-1} \) by the following procedure. First multiply \(H \) by a diagonal matrix \(D \) that makes the columns orthonormal. Then invert. Then account for the diagonal matrix \(D \) to find the 16 entries of \(H^{-1} \).

Solution. To normalize the columns of \(H \), we let \(D \) be the diagonal matrix with diagonal entries \(1/\sqrt{2}, 1/\sqrt{6}, 1/\sqrt{12}, \) and \(1/2 \), and we multiply \(H \) by \(D \) on the right: \(H' = HD \). Because \(H' \) is an orthogonal matrix, \(H'^{-1} = H'^T \). Then \(H^{-1} = D(HD)^{-1} = DH'^T \).

Computing, we obtain \(H^{-1} = \begin{bmatrix} 1/2 & -1/2 & 0 & 0 \\ 1/6 & 1/6 & -1/3 & 0 \\ 1/12 & 1/12 & 1/12 & -1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix} \).
8. (a) Factor this symmetric matrix into \(A = U^T U \) where \(U \) is upper triangular:

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{bmatrix}.
\]

Solution. By applying row operations we find the factorization \(A = LU \)

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

so that \(L = U^T \).

(b) Show by two different tests that \(A \) is symmetric positive definite.

Solution. Unfortunately it is hard to compute the eigenvalues explicitly, but nevertheless one can apply one of these tests:

i. \(A = U^T U \) for \(U \) invertible;

ii. the energy test, \(x^T A x = x U^T U x = \| U x \|^2 \geq 0 \) of \(x \neq 0 \) because \(U \) is invertible;

iii. the pivots of \(A \) are the pivots of \(U \) which are all positive;

iv. the upper left determinants of \(A \) are all 1 hence positive;

v. the eigenvalues satisfy the equation \(- (\lambda^3 - 6\lambda^2 + 5\lambda - 1) \) which cannot be zero for negative \(\lambda \) by checking the signs in the sum.

(c) Find and explain an upper bound on the eigenvalues of \(A \). Find and explain a (positive) lower bound on those eigenvalues if you know that

\[
A^{-1} = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{bmatrix}.
\]

Solution. The eigenvalues \(\lambda_1, \lambda_2, \lambda_3 \) are positive and they sum to the trace, which is 6, so they can be at most 6. The inverses of the eigenvalues \(1/\lambda_1, 1/\lambda_2, 1/\lambda_3 \) are the eigenvalues of \(A^{-1} \), which has trace 5, so this tells us that each of the \(\lambda_i \) is at least 1/5.