Your name is: ____________________________ Grading 1

Please circle your recitation:

1) Mon 2–3 2-131 S. Kleiman 5) Tues 12–1 2-131 S. Kleiman
2) Mon 3–4 2-131 S. Hollander 6) Tues 1–2 2-131 S. Kleiman
3) Tues 11–12 2-132 S. Howson 7) Tues 2–3 2-132 S. Howson
4) Tues 12–1 2-132 S. Howson

1 (30 pts.) (a) Compute the determinant of

\[
A = \begin{bmatrix}
1 & -1 & 1 & 0 \\
1 & 1 & 5 & 0 \\
1 & 3 & 9 & 0 \\
0 & 0 & 0 & 2 \\
\end{bmatrix}.
\]

(b) Find an orthogonal basis (orthonormal is even better) for the column space of \(A\). Start from a basis and use Gram-Schmidt (and common sense).

(c) If you change the 1 in the upper left corner of \(A\) to 2, what is the change in the determinant (I would use cofactors).
2 (24 pts.) An experiment at the nine times $t = -4, -3, -2, -1, 0, 1, 2, 3, 4$ yields the consistent result $b = 0$ except at the last time ($t = 4$) we get $b = 10$. We want the best straight line $b = C + Dt$ to fit these nine data points by least squares.

(a) Write down the equations $Ax = b$ with unknowns C and D that would be solved if a straight line exactly fit the data (it doesn’t).

(b) Find the best least squares value of C and D.

(c) This problem is really projecting the vector $b = (0, 0, 0, 0, 0, 0, 0, 0, 10)$ onto a certain subspace. Give a basis for that subspace and give the projection p of b onto the subspace.
3 (22 pts.) Suppose an \(m \) by \(n \) matrix \(Q \) has orthonormal columns.

(a) What is the rank of \(Q \)?

(b) Give an expression with no inverses for the projection matrix \(P \) onto the column space of \(Q \).

(c) Check that your formula for \(P \) satisfies the two requirements for a projection matrix.
(a) Suppose Q is an orthogonal matrix and $Qx = \lambda x$. Compare the lengths of λx and Qx (using $(Qx)^T(Qx)$) to reach a conclusion about λ.

(b) The Hadamard matrix H has orthogonal columns:

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

Project the vector $b = (1, 2, 3, 4)$ onto the line spanned by the last column. Then project b onto the subspace spanned by all four columns.

(c) Find the eigenvalues of $H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.