18.099b Problem Set 5a
Due: Thursday, April 1st (in class or before).

This assignment is to write a short paper on the oscillation of a function. It should be typeset in TeX. Arrange and express the material discussed below in whatever way you think best. Be sure to define all the terms I have italicised (even if I have not defined them here).

Given a function \(f(x) \) and a real number \(c \), we say that \(f \) is bounded about \(c \) if there exists some \(\epsilon > 0 \) such that

(i) \(f \) is defined on \([c - \epsilon, c + \epsilon]\) except possibly at \(c \) itself, and
(ii) the set \(\{f(x) : x \in [c - \epsilon, c + \epsilon], x \neq c\} \) is bounded from above and below.

For any such \(\epsilon \) let \(A_{\epsilon} := \{f(x) : x \in [c - \epsilon, c + \epsilon], x \neq c\} \). The oscillation of \(f \) at \(c \) is defined to be the number

\[
\text{osc}_f(c) := \lim_{\epsilon \to 0} (\sup A_{\epsilon} - \inf A_{\epsilon})
\]

Show that this limit exists and hence \(\text{osc}_f(c) \) is well defined.

Show that for functions \(f \) bounded about a real number \(c \), \(\text{osc}_f(c) = 0 \) if and only if \(f \) is continuous or has a removable singularity at \(c \). Give two examples of non-zero oscillation, one where \(c \) is a jump singularity and one where \(c \) is an essential singularity.

An intuitive way to describe what it means for a function to be continuous at a point \(c \) would be to say: “\(f(x) \) can be made arbitrarily close to \(f(c) \) by making \(x \) arbitrarily close to \(c \)”. Fixing \(\tau \geq 0 \), give an analogous intuitive description of what it means for \(f \) to have oscillation \(\tau \) at a point \(c \). The idea is that oscillation measures the “amount” of discontinuity.

Suppose \(f \) is monotonically increasing and defined on an interval \([a, b]\). Note that \(f \) cannot have any removable singularities in \([a, b]\), and that that for any \(c \in (a, b) \), \(f \) is bounded about \(c \). Moreover, \(\text{osc}_f(c) = \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x) \). Conclude that for any \(\tau > 0 \), the number of points in \((a, b)\) at which \(f \) has oscillation greater than or equal to \(\tau \) is at most \(\frac{f(b) - f(a)}{\tau} \). Use this to show that \(f \) has at most countably many discontinuities in \((a, b)\). (Recall that a set \(S \) is countable if there is a bijection between \(\mathbb{N} \) and \(S \)).