LIMITS OF FUNCTIONS

Given \(f : \mathbb{R} \to \mathbb{R}, \lim_{x \to p} f(x) = q \) means that \(|f(x) - q| < \epsilon\) whenever \(0 < |x - p| < \delta\).

Theorem 1. \(\lim_{x \to p} f(x) = q \) if and only if \(\lim_{n \to \infty} f(p_n) = q \) whenever \(\lim_{n \to \infty} p_n = p \) with \(p_n \neq p \).

Proof. Suppose \(\lim_{x \to p} f(x) = q \) and let \(\{p_n\} \) be any sequence of real numbers converging to \(p \), but not equal to \(p \). Let \(\epsilon > 0 \) be arbitrary. Then there exists a \(\delta > 0 \) such that \(|f(x) - q| < \epsilon\) if \(0 < |x - p| < \delta\). On the other hand, there is a natural number \(N \) such that for all \(n > N \), \(0 < |p_n - p| < \delta\). Hence for all \(n > N \), \(|f(p_n) - q| < \epsilon\), and so \(\{f(p_n)\} \) converges to \(q \).

Suppose \(\lim_{x \to p} f(x) \neq q \). Then there exists some \(\epsilon > 0 \) such that for every \(\delta > 0 \) there exists some \(x(\delta) \in \mathbb{R} \) for which \(0 < |x(\delta) - p| < \delta\) but \(|f(x(\delta)) - q| \geq \epsilon\). Hence

\[
\lim_{n \to \infty} f(x(\frac{1}{n})) \neq q \quad \text{but} \quad \lim_{n \to \infty} x(\frac{1}{n}) = p. \quad \blacksquare
\]