you have to work hard to get your thinking clean to make it simple.

Steve Jobs, 1955-2011

2.009 Product Engineering Processes

informed decisions lead to good outcomes, but uninformed decisions are easier to make

Robin White
Director, Surface Ship Design
Naval Sea Systems Command
What’s now workflow
Assembly review

overview

digital submission 11 PM, Tuesday October 30 (red, green, blue, yellow)
digital submission 11 PM, Thursday November 1 (pink, orange, purple, silver)
images (up to 10), CAD files, list of who-did-what, product contract

product variations
storyboards, circuit designs, etc.
Assembly review

Overview

10 minute presentations/discussion
Wednesday October 31 (red, green, blue, yellow)
Friday November 2 (pink, orange, purple, silver)

project your contract (or large mounted poster)

show your most current work
not a homework assignment!

can work in pairs, everyone must contribute
no make work!
avoid meaningless detail
keep working to understand user needs
keep doing tests
2.009 Product engineering processes today

Product architecture structure the problem
Professional Ethics

wait wait, don’t tell me: bluff the listener

[Bar chart with categories: VisualLab, Software, Eng. students less honest]
Yep, one more…

mini quiz

put your name on the index card

list two words you should avoid when referring a design during a critique

what does **G’DAY** stand for?
Product architecture

definition

the organization or chunking of the products functional elements, and the definition of the interfaces between these elements.

functional and physical decomposition
Product architecture

purpose

The architecture and product specifications together define the structure/framework of the product.

The architecture is an important vehicle for organizing and focusing team activities.
Ad. B-pil. roof rail	1	1
Body side	2	1
Front header	3	1
Rear header	4	1
Rear pan. In. Upp.	5	1
Roof bow	6	1
Roof panel	7	1
Roof rail	8	1
Channel	9	
Dash cross mem.	10	
Floor panel	11	
Front side rail	12	
R. side rail center	13	
Seat crossm. fr.	14	
Seat crossm. rear	15	
Back panel	16	
Back panel side	17	
Back panel upper	18	
Rear floor side	19	
Rear side rail	20	
Spare wheel well	21	
Ad. A-pil. roof rail	22	1
A-pillar inner	23	1
A-pillar reinforce.	24	1
Cowl	25	1
Dash panel	26	1
Front susp. Hous.	27	
Shotgun	28	1
B-Pillar	29	1
Crossr. rear floor	30	
Heelkick	31	
Rear floor panel	32	
R. panel in. lower	33	
Rear side floor	34	1
Rear side rail frt	35	1
Reinl. rocker rear	36	1
Rocker	37	1
Wheelhouse	38	1
Product architectures

two fundamental types

Modular

Integral
Product architecture 1
hand power tools

Several different tools for same customer segment

Reverse engineering exercise
Blank piece of paper, name on top of page
Draw the circuit for the drill
Collect papers after 4 minutes
Please DO NOT look at your neighbor’s work
Product architecture 1

hand power tools

Several different tools for same customer segment

Modular product architecture
- Modules are functionally self contained
- Component interfaces well defined
- Low packing density
- High volume, commodity elements
Product architecture 2
hand power tools

Individual tool designed for a specific market

Integrated product architecture
components designed or adapted for the specific product geometric or functional relationships tightly coupled
Product architecture

Drill performance comparisons

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Integral</th>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>charge time</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>power/weight</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>purchase price</td>
<td>~8-10</td>
<td></td>
</tr>
</tbody>
</table>
Product architecture 3

hand power tools

Several different tools for same customer segment
Modular architecture

Advantages

- task allocation and out-sourcing
- economies of scale
- reuse/standardization for developing new products
- maintenance
- adaptation/mass customization (combinatorial design)
Integrated architectures
advantages

Performance: modularity can mean performance sacrifices especially when performance is $f($size, shape, mass$)$

It is easier to optimize overall system with an integrated architecture
Product architecture decision
key role in defining what the product can be

integral

modular
Product architecture decision
key role in defining what the product can be

often linked with corporate identity
Product architecture
innovation through a new architecture

first sold in?
1998

change color and style for ‘price of evening dress’
$10,000
~1800 lb.
0-37 mph in 6 seconds, ~80 mph max.
40 mpg combined
Finally

reminders

codes of value (final version today at 5 PM)
peer review 2 (5 PM today)

assembly 11 PM Oct. 30, (red, green, blue, yellow)
assembly 11 PM Nov. 1, (pink, orange, purple, silver)

in-class presentations Oct. 31, Nov. 2
(having design variations is a good thing)

technical review with alpha prototypes, Nov. 15
Finally

reminders

tonight, 7 PM in Pappalardo!

mediating design decisions. SIs, Yodas, and all

Yoda workshop (8 PM also in Pappalardo)

think about what you need work on/prepare so team can make a good, informed decision

please let me know your choice!