PRODUCT ARCHITECTURE AND VARIETY

Relation to assignment

• Your project will be for a product family
• Businesses can’t be based on a single product, must be based on a stream of products
• Need to
 – plan this stream
 – leverage product development resources by planning product architecture
• Many approaches to product plans
 – Need to select the best approach for your business
Types of Projects

- Completely new platform
 - HP InkJet
 - Double Insulation
 - Ford Truck

- New Platform
 - Clean sheet design based on existing technology
 - one or two key parts/systems are shared
 - Ford Explorer

- Platform Extension
 - Subsystem changed and enhanced
 - A portion of the parts/processes shared
 - New “rounded design”

- Derivatives
 - Quality and cost reductions
 - Added functionality
 - A majority of the parts/processes

Shared Parts ≠ Product Platform

- Standard parts. Common agreement on standard parts.
 - Screws
 - Motors
 - Materials

- Product Architecture. Common agreement on sub-assemblies and architecture
Core benefit proposition for arch.

- Leverage fixed investments over multiple products
 - tooling
 - development
 - marketing
 - sales
- During project
 - what are the expensive fixed costs that can be spread among products

Types of Variety

- Across vertical market segments
 - Quality & functionality upgrades
- Across horizontal market segments
 - Different applications
- Through time
 - upgrades
 - additional product offerings
- Real time variety (user created)
Types of variety

<table>
<thead>
<tr>
<th>Tiers</th>
<th>Customer Indoor</th>
<th>Customer Outdoor</th>
<th>Automotive</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>Market: Features: Cost:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Horizontal Platforms

<table>
<thead>
<tr>
<th>High Cost</th>
<th>High Performance</th>
<th>Mid-Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost</td>
<td>Low Performance</td>
<td>Low-End Platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-End Platform</td>
</tr>
</tbody>
</table>

Examples:
Automotive, others?
Vertical Platforms

- High Cost
 - High Performance
 - Initial Platform
 - Scale down
 - Scale up

- Low Cost
 - Low Performance

Examples: Camera equipment, medical equipment, GPS, night vision goggles, others?

Horizontal and Vertical

- High Cost
 - High Performance
 - Initial Platform

- Low Cost
 - Low Performance

Examples: Black and Decker, Computers, others?
Performance: ability to tailor interactions between products to improve product performance (size, weight, features, etc)

Expandability: ability to change or add a feature of a product

Integral Aircraft design

Slot
 Automotive
 Stereo

Bus
 Computer

Sectional/wine rack

Modular

Expandability/Changeability

Part and Process Commonality

3.2/3 Product Architecture

29.00

44.95

39.95

54.95

37.95

Features:
 Battery life
 Auto reverse
 Mega Base
Process Commonality
Slot Architecture
Inside/out vs. outside/in architecture

- Inside/out - the core technology stays the same. The outside is adjusted
 - HP Inkjet
 - Sony walkman
- Outside/in - the outside stays the same but the internal technology is changed
 - Cars
 - Computer memory/processors
Outside/In Architecture

Inside/out Architecture
Interfaces

- Interfaces are required to enable rapid product change

Design the interfaces to

- Allow for
 - redesign/replacement of functional elements
 - within a set of “rules” that are set by the interfaces between parts
- Enables
 - standard assembly processes
 - rapid redesign and debug
Interface types

- Energy (plug)
- Material (ink cart.)
- Information (bus arch of a computer)
- Physical (universal motor)
Coupled

- Chunk A must be adjusted if Chunk B is.
- Examples
 - Car doors
 - Aircraft wings

Uncoupled

- Side A and B can be changed independently as long as interfaces are kept the same
 - Camera Bodies
 - Headphones

Adjustable Interface (used when the mating part is variable)
Three levels

- Standard
- Open Product Specific
- Closed Product Specific

Approaches to architecture

- Razor/razor blade model
 - Sell the unit at low cost, make money on razors
 - Can back-fire if the razor can be made by another org. (ink cartridge)
- Upgrade/new toy model
 - Buy the common system and then add bells
 - Camera
 - KitchenAid Mixer
Complexity and mix

Complexity

• X Features (air-conditioning, stereo, seat material, etc).
• N_i options per feature
• Maximum variety =
 – N_1 \times N_2 \times \ldots \times N_X
Benefits of product variety

- Address more markets
- Leverage distribution channel, sales force etc.

- Question for project
 - How much variety is needed and what is the cost/benefit argument for additional variety

Important note:

- Variety can be generated through non-physical “parts”
 - Software
 - Service
 - etc...
How does this relate to TE

- Appropriability
 - Ability to copy/compete with you
 - Modular designs are easier to copy than integral
- Competition
 - Ability to rapidly address customer needs through product introduction

Summary
Product Questions

• How is the product line going to change/expand over time
• How are the interfaces going to constrain the product over time
• How can the functionality be increased or decreased to introduce derivative products
• How are cost reductions going to be implemented

Process Questions

• Where is manufacturing equipment going to be expensive and/or time-consuming to adapt.
• Where is the current manufacturing process too expensive/difficult and need new approaches
• Where are small batch sizes too expensive (set up/tooling)
• Where is variety expensive (tooling)
• Where are cost reductions going to be implemented
Risks

- Interfaces are wrong
- Core technology becomes old
- Core technology won’t be ready in time
- Product line is not expandable enough
- Won’t be followed through
 – investment justification depend on the continual use of the approach

Part commonality

- Benefits
 – Lower inventory
 – Higher volumes
- Problems
 – Use the “highest common denominator”
 – May sacrifice overall performance
 • size
 • weight
Design Process for Product Line

Evolution is apparent in camera designs.

- Outdoor - many intricate pieces, difficult assembly
- Flash - no improvements made, circuitboard, flash, and battery added
- Panoramic - fewer pieces, easy assembly, panoramic viewfinder added
- Waterproof - similar to Panoramic, clear plastic box, large winding knob, and rubber button, and rubberband handle added

Platform 1
Platform 1

Front and back body pieces that enclose the center piece; film spool

Platform 1

Center includes lens/shutter and gears/viewing lenses
Platform 1

All cameras have similar gears, cams, and springs

Modularity between Outdoor and Flash cameras

Outdoor and Flash cameras have identical part lists, excluding the circuitboard, flash and battery
Platform 1

- Many small parts that could be eliminated
- Difficult assembly process requires camera be assembled from many sides
- No improvements made between Outdoor and Flash cameras

Platform 2: Kodak Panoramic and Waterproof Cameras

- Fewer, more compact pieces
- Simple assembly, allowing most pieces to be dropped into the top of the camera
- Camera is in a cardboard carton, removing the need for a smooth surface finish

Body design for both Panoramic and Waterproof cameras
Steps to define architecture

- Define the functional structure of the product
- Map the function to physical components
- Specify the interfaces between the parts
- Evaluate for
 - product performance
 - expandability
 - reusability
 - manufacturability

Functional Model

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>Desired</td>
</tr>
<tr>
<td>Undesired</td>
<td>Undesired</td>
</tr>
</tbody>
</table>

Function

Interface types:
- Energy
- Material
- Information
- Physical
Warning!

There are more than one way to model the function structure.

Different models will result in different architectures
Guidelines

- Create chunks where interfaces are tightly coupled
 - design out interfaces
- Create interfaces where
 - features are added
 - parts may be changed
What did you learn?

- A set of approaches to create product variety at lower cost
 - Different architectures
 - Different introduction plans
- Understand the benefit and limitations of each approach

How does this relate to your assignment

- Need to design a business around a product family
- Need to design the appropriate product architecture
 - Where is variety generated
 - How much variety are you creating
 - When is the variety generated
 - User or Range of product offerings or Upgrades
- Need to justify the business case for these decisions
Next Thursday: Assignment 0

- Teams of 2
- Written document and presentation
- Generate three technology ventures/product families. These ideas should:
 - Be feasible within the scope of the course
 - Have an architecture that allow product variety to be created
 - Have a reasonable market and competitive capability

Assignment

- Describe
 - the product family
 - the product architecture and the product variety enabled by the architecture
 - Why this technological development is necessary and how it will be used by the customer

- Analyze your concept:
 - Feasibility
 - product risks
 - business risks

- Present your concepts:
 - Briefly describe the three ideas (one slide each)
 - For one idea prepare a detailed presentation.