Lecture 10: Prototypes

Prototyping

• Role of prototyping in the design process
• Selecting the correct prototyping strategy
• Linkage with design strategy: early or late concept lock

• Assignment
 – You need to develop the right prototypes
 – Need to justify why you are doing the prototype you are doing
Prototyping as a management tool

• Improve efficiency of the PDP
• Increased learning
 – provides a more certain metric about the quality of the product
 – feedback problems to the functional and product teams
• Communication
 – becomes a common metric or language for all functional groups
• A metric for how well the design process is going

Prototypes as a risk mitigation strategy

• Certain characteristics of the product are high risk items.
• Risk = probability of failure * cost of failure
• Prototypes move the measure of probability from an uncertain value (.50) to a certain value (1 or 0).
• Key question:
 – How much are you willing to pay to reduce the uncertainty around failure
Prototyping as a Real Option

- By the option to avoid a problem later on
- The option may or may not be ultimately valuable

- The greater the uncertainty (the higher the cost), the more valuable the option is

Three Stages of Prototyping

- Concept
 - aesthetics
 - shape
- Function/Engineering
 - performance
- Production
 - producibility

System
Subsystem
Components

Concept -> Eng. -> Production
Customer prototypes
What does the customer think

- Industrial design - “look and feel”
 - Renderings - sketch
 - Sketch models - quick 3-D sketch
 - Foam models - models that have the look and feel but no functionality
 - Functional prototypes - models that have look feel and key functionality

Functional Prototypes
Does it function correctly

- Virtual
 - Crash simulation
 - VSA
- Physical
 - Crash test samples
 - Breadboards

Verification / Conformance testing
does it function

Robustness / representative testing
does it function under
 stress
 process variation
 time

- Piece Part
 - simulate individual part behavior
 - durability tests on intermediate shafts
- System
 - simulate how the whole system works together
 - i.e., road handling
Production Prototypes
Can you produce it efficiently

- Made using production equipment
- Used to highlight risk of expensive assemblies
- Very expensive because tooling is expensive

Supplier problems

- Often suppliers making prototypes are different from those making the final tooling
- Pros
 - turn-around time is shorter for prototypes
 - “quality” of prototypes is better
- Cons
 - no learning by final suppliers
 - no teaching by final suppliers
Two prototype types

• Prototype as master model
 – high quality as possible
 – built to validate the design
 – production tries to mimic quality in prototype
• Prototype as problem detector
 – built with production equipment
 – built to validate the design under production conditions

Prototype Metrics

• Fidelity
 – How accurately does the prototype represent the
 • function
 • look
 • production intent
• Time
 – Drives learning cycles
 – “This is representative of the design 10 weeks ago but so many changes have happened, it is invalid”
• Cost
Prototype fidelity

• Examples
 – Sterolithography - good at look, medium at function, bad at production intent, fast to produce, medium expense
 – soft tooling - good at look, medium at function, medium at production intent, slow to produce, expensive

Prototyping improvements

Better prototyping tools
Best practice characteristics

- Proper level of prototyping picked
 - lowest cost/shortest time prototype that will answer the questions
- Production intent as early as possible
- Timing
 - do not overlap prototype cycles
 - time with design reviews
- Propagate learning through the organization

Who should be involved

- Middle prototypes (functional) are
 - primarily for engineering
 - contain significant information for manufacturing
- Who should build it
 - Outsourced/Vendor
 - good: range of capability
 - bad: learning
 - Model shop
 - good: internal learning
 - bad: manufacturing intent
 - Plant
Future of prototyping

- Rapid prototyping technologies
 - part printing
 - printing tooling
 - problems
 - the material characteristics are different
 - expensive
 - still time consuming
- Rapid cutting technologies
 - high speed machining
 - high speed CNC path generation
 - make parts and tools out of final materials

Periodic Prototyping

Cycle 1

Cycle 2

Cycle 3

Cycle 4

• Shorter more rapid cycles
• Earlier beginning of pilot production verification
Types of prototypes

<table>
<thead>
<tr>
<th>Types of</th>
<th>Role</th>
<th>Benefits</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>prototype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale model</td>
<td>Drag/fluid models</td>
<td>inexpensive</td>
<td>• scale up effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• see the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• time consuming</td>
</tr>
<tr>
<td>Engineering</td>
<td>System performance</td>
<td>Focus on performance</td>
<td>• Don’t reflect producibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Requires specialized skills</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Look/feel</td>
<td>Show the ID of the product</td>
<td>• No indication of performance</td>
</tr>
<tr>
<td>Production</td>
<td>producibility</td>
<td>Shows production problems</td>
<td>• Very expensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Unable to change product types</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Performance of sub-system</td>
<td></td>
<td>• Doesn’t capture the system</td>
</tr>
<tr>
<td>Elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer based</td>
<td>Performance / rapid iteration</td>
<td>Cheep</td>
<td>• Don’t reflect actual performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• accepted after time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ghosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Not trusted</td>
</tr>
</tbody>
</table>

Prototype strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>benefits</th>
<th>problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big gain vs. continual improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early production prototypes</td>
<td>Detect problems earlier</td>
<td>If there is a change prototypes invalidate designs</td>
</tr>
<tr>
<td></td>
<td>Design in electronics</td>
<td></td>
</tr>
<tr>
<td>Postpone production</td>
<td>Lower cost</td>
<td>Unexpected problems</td>
</tr>
<tr>
<td></td>
<td>Design in metal</td>
<td></td>
</tr>
<tr>
<td>Suppliers make protos</td>
<td>better learning</td>
<td>loose control of the learning</td>
</tr>
<tr>
<td>Small changes “seat changes”</td>
<td>Easier to find difference and fine tune</td>
<td>Locking out other possible configurations</td>
</tr>
<tr>
<td>Delay second</td>
<td>Don’t commit to design</td>
<td>Don’t have the benefit of learning</td>
</tr>
<tr>
<td>Representation</td>
<td>captures production (early detection)</td>
<td>changes to design is hard</td>
</tr>
<tr>
<td>Conformace (proto as master)</td>
<td>Captures the design intent/explore design</td>
<td>hard to manufacture</td>
</tr>
<tr>
<td>Two different</td>
<td>Explore more concepts</td>
<td>Inability to isolate fine tuning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions

- What strategy would you use in New Zealand
- Are the problems BMW is facing the same as New Zealand
 - what are the similarities
 - what are the differences

Key points

- Prototypes are “investments” that whose return is information and uncertainty reduction. In addition it finds problems that couldn’t be detected
 - tradeoffs/performance can’t be predicted with simple models
 - non-linear, highly constrained, highly coupled problems
 - function is not quantifiable “ride” “fee” “look”
- Change in competitive field changes the design/prototyping strategies
 - time, $, quality goals
 - push into more “non-hardware” work
- Used to validate designs when the cost of getting it wrong is very high
- Prototypes are on the critical path -- shorten prototype time, shorten design time
- Integral to the design process
- Prototypes are used to reduce uncertainty
- Design-test-refine cycle
Lecture 11: Tools and methods

• Newbold, R. C. Project Management in the Fast Lane: Applying the theory of constraints

• What are the difference between critical chain and other scheduling.
• What are the benefits
• What is required to execute the projects in this mode?