Lecture 19
Design for Manufacture
Design for Assembly

DFM

- Design’s decisions will have significant impact on the costs associated with the manufacture of the product
 - Piece part costs
 - Cost of quality
 - yield
 - process precision
 - Set-up costs
 - Labor content
 - Throughput
 - Flexibility
Design for Manufacture

• Broad term applied to a variety of tool, guidelines, and methods to ensure
 – Low cost parts
 • Piece parts are built using the lowest cost process possible
 • Design dimensions/tolerances are specified with thought.
 – Low cost assembly
 • DFA
 – Low cost processes
 • Processes are designed to target the critical to function characteristics

Tradeoffs

• Piece part simplicity vs. assembly time
• Variety vs. integrality
• Manufacturability vs. performance
DFM Iteration

• Process selection
 – material requirements
 – volumes
 – tolerances
 – part complexity
 – setup costs
 – expertise

• Design for the process
 • ensure that the product can be made with the process
 • exploit some of the benefits of the process

• General Design Guidelines
 • Reduce part count
 • DFA

DFM Support Processes

• Simultaneous Engineering / Cross-functional teams
• Design for Manufacturing Reviews
• DFM Guidelines
• DFM Metrics
• Simulation software
Simultaneous Engineering / Cross-functional teams

- Simultaneously design the product and the process
- Prevents *over-the-wall design*
- Cross-functional teams continually evaluate each others work and have input on the whole product/process design

DFM Reviews

- Formal reviews where experts are brought in to evaluate the manufacturability of the product
- Formalized gate
- Problems
 - Often not taken seriously
 - “we never can get design to make changes, we’ll just wait until we get it to make it manufacturable”
DFM Guidelines

- Formalized lists of guidelines for a specific manufacturing process
- Developed by manufacturing to generate rules for design to follow
- Can be either computer based or book based
- Heuristics rather than quantitative
- Problems
 - Just sit on the desk - never used

Design for Adhesives

Worse → Better
Design for Assembly

- Reduce assembly time by
 - Integral parts
 - Remove fasteners
 - Minimize assembly time
Minimize part count through integral parts

• Identify
 – parts that can be made of the same material
 – parts that don’t move relative to each other
 – parts that do move but can use
 • integral joints
 • flexures
• Problems
 – Reduce modularization
 – Increase complexity
• Benefits
 – Reduced assembly
 – Reduced tolerance stack-ups

Minimize assembly time

• Easy to get part
 – parts don’t tangle
• Easy to orient part
 – symmetrical or very unsymmetrical parts
• Easy to assemble parts
 – self aligning
 – lead-in chamfers
Minimize fasteners

- **Options**
 - Press fits
 - Adhesives
 - Snap-fits
 - Integral parts
- **Problems**
 - Fasteners are stronger
 - Fasteners can be used to locate parts
 - Temperature insensitive
 - Less sensitive to part variation

DFM metrics

- Quantitative evaluations that are used to put a metric on the manufacturability of a product.
- The goal is to improve the metrics through design changes
- Examples
 - Boothroyd and Dewhurst's complexity
 - Yield
 - # of manuf. Rule violations
Boothroyd and Dewhurst Complexity factor

- Total number of parts N_p
- Total number of part types N_T
- Total number of interfaces N_i

$$\text{Complexity} = \sqrt{N_T + N_P + N_i}$$

Yield

- Calculation of the number of parts that will not pass inspection.
- Ways to calculate
 - Models of the product
 - Statistical correlation with historical data
Yield based on Model

• Use historical data to determine the product characteristics that are highly correlated with yield problems
• SMT example
 – Process technology
 – Number of parts
 – Number of interconnects
 – Volume
 –
Simulation software

- Used to simulate the “as built” state of a product
- Examples
 - Mold flow (injection molding)
 - CNC simulations
- Problems
 - Don’t give guidance on the changes
 - Time consuming

Collect the DFM guidelines and review
Fixtured vs. Determinate Assembly

<table>
<thead>
<tr>
<th></th>
<th>Fixtured</th>
<th>Determinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Fixtures</td>
<td>Precision holes</td>
</tr>
<tr>
<td>Flexibility of fixture</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Precision requirements</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Ability to rework</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Assembly Time</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
Sub-assemblies

• Build ups
 – Parts (bulkheads, doors, etc) are built up of many parts that are assembled in dedicated fixtures

• Monolithic
 – parts are machined out of a large
 • forging, or
 • billet
 – to make a single piece

Monolithic vs. build up

<table>
<thead>
<tr>
<th></th>
<th>Monolithic</th>
<th>Build up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near net shape forging</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Billet</td>
<td></td>
<td>flexible</td>
</tr>
<tr>
<td>Cycle time</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Ability to increase throughput</td>
<td>Low</td>
<td>Low/med</td>
</tr>
<tr>
<td>Crack resistance</td>
<td>Med</td>
<td>Med.</td>
</tr>
<tr>
<td>"Quality"</td>
<td>High/med</td>
<td>High</td>
</tr>
</tbody>
</table>
Lecture 20:

- VARIATION RISK MANAGEMENT, THE ROLE OF QUALITY

- No readings