Lecture 14: Manufacturing Strategies

Outline

- Review Case
- Strategy
- Delayed differentiation
- Logistics
- Lean
 - Design for Lean
ITT Case

• Metrics
• Decisions
• Methods
• Resource Allocation
• Risk/Uncertainty
• Tradeoffs

Metrics

• Product
 – Features
 – Product life
 – Weight
 – Size
• Cost
 – Unit cost
 – Margins

• Production
 – Volume
 – Ramp time
 – Product variety
 – Flexibility
 • $ to change over
 • t to change over
Methods

• Copy exactly
• Simultaneous engineering
• DFM
• Architecture
 – Integrated
 – Modular
• DFA
 – remove screws
• Automated equipment
 – robotic assembly
 – routing
 – inspection

Risk/Uncertainty

• Next generation is different (can’t share equipment)
• Customer wants more variety
• Does automation increase or decrease quality
• Product life cycle (does it justify equipment)
• Lower margins
• Ramp critical but bringing up complex equipment time consuming
• Engineering changes
• Quality
Tradeoffs/Decision

• DFA required more precise parts
• Variety vs. customer needs
• Copy exactly vs. not
• Automatic vs. people

Fully Automated
• Higher quality
• Lower wages
• Produce prototypes on production equipment
• Global sourcing
• Better control
• Reusable
• More efficient

Mixed
• Have to have people inspect
• Our parts aren’t as good of a quality
• Wages aren’t an issue
• Customers want a dedicated line
• Can’t improve the process
• The product will change too much
• More flexible
Questions

• How did the architecture help, hurt, impact manufacturing strategy
• Does automation always mean high quality
• Where should flexibility come from
• What questions would you ask
• What information would you want to make the decision

Strategy
What are companies trying to achieve

- Low-cost manufacture
 - low inventory
 - fast throughput
- Flexibility/Reusability
- Product mix at low cost
 - simultaneous variety
 - upgrades
- Minimize complexity

Strategy selection

- Strategy selection
 - flexible/dedicated?
 - automated/manual?
 - batch/single piece flow?
Metrics

- **Flexibility** - how fast can a system respond to change
 - short-term response
 - engineering change
 - process changes
 - machine unavailability
 - cutting tool failure
 - mix change
 - long-term response
 - new product

- **Productivity** - time and resources required to build a single product
 - labor
 - inventory
 - machine time

Why Flexibility?

- **Why not?**
 - It is expensive
 - It is risky
 - It is hard to control

- **Why?**
 - Have to do it to be competitive
 - Product cycles are too short to depend on dedicated lines

75% of all parts are in batches of 50 or less
Flexibility as a real option

- Paying extra now to potentially reduce costs later
- Metrics
 - Extra cost now
 - Possiblity of being wrong about later needs
 - Cost of rebuilding dedicated machinery

Why Dedicated Systems?

- Why not?
 - Not reusable
 - Not easily changed
- Why?
 - Fast
 - Don’t have to sub-optimize system for a given product
Why Automation?

- Why not?
 - Expensive
 - Hard to control
 - Risk that you can’t use it on the next generation
 - Not able to respond to design changes
- Why?
 - Higher productivity
 - Lower labor
 - Higher quality (?)

Cellular mfg. Vs. Batch

- Batch
 - Process oriented
 - Long set ups/volume independent process
- Advantages
 - Process efficiency
 - Quality control on single step
- Disadvantages
 - System inventory
 - Picking up and putting down parts a lot
 - Errors are caught later when it is hard to fix (i.e. disruption)
 - In process inventory
- Cellular
 - Everything happens in one location
 - Product focused
 - Single part flow
- Advantages
 - People are flexible -- many steps
 - Lower in process inventory
 - Errors are caught by the person who created them
- Disadvantages
 - Process inefficiencies
 - Higher skill worker
Two decision factors

<table>
<thead>
<tr>
<th>Flexible</th>
<th>Dedicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated</td>
<td>NC Machine Cells</td>
</tr>
<tr>
<td>Manual</td>
<td>Job shop/ skunk works</td>
</tr>
</tbody>
</table>

Job Shop
- Disconnected Line
- Assembly Line
- Continuous Flow

Flexibility
- Oil Refinery
- Automotive
- Commercial Printers
- Connection Rods

Production Capacity
- High volume - high standardization, commodity products
- Few major products - high volume
- Multiple product - low standardization
- Low Volume - low standardization (one of a kind)

Decision variables

- functional requirements
- volumes
- complexity
- cycle time
- labor costs
- quality requirements (repeatable vs. quality)
- product life
- design stability

Lean
Where did Lean come from?

- History
 - International Motor Vehicle Program took on the task of benchmarking Japanese, US, and European automotive industries
 - The output of the IMVP was *The Machine That Changed the World*
 - Womack, Jones, and Roos attributed the success of Japan’s (and specifically Toyota’s) automotive industry to Lean production

What does Lean try to avoid

- Hidden waste
 - Moving goods without any purpose
 - Excess processing
- Faux Just-in-time delivery
 - Large stocks being transferred to the suppliers
- Excess labor content
- Complex MRP planning with expediters
- Low quality
What are the tools of Lean?

- Just-in-time inventory, pull system, Kanban systems
- Flexible work force
- Work cells
- Close supplier relations
- Lack of Muda
- Rapid product development
- Continual improvement
- Poka-Yoke
- Total Productive Maintenance
- Reduced set up times

5 attributes of Lean

- Flow
 - Inventory does not sit around
 - No batches or queues
- Pull
 - The upstream customer pulls the product, design, part, information rather than it being generated to fulfil a predicted need.
- Value
 - Understand the steps in the process that create the value (or add waste)
 - Everything that is done should add value
 - Type I Muda - waste that is designed in
 - Type II Muda - waste that can be removed without changing the system
What are barriers to Lean?

- Consolidation of units
 - Shipping
 - Paint
- Expensive Changeover
- Uncertainty about customer desires
 - Inventory
 - Excess variety
- Large processing centers
 - Steel mills
- Facilities not co-located

Improvement steps to Lean in production

- Minimize in-process inventory
- Change from batch to single piece flow
- Reduce set-ups
- Train workers to perform multiple tasks
- Minimize scrap/rework/repair
- Improve transparency of the supply chain
- Remove out-of-sequence work
- Miniaturize machines (net capacity/cost is higher)
- Reduce chance of errors
 - Poka-yoke
 - Visual checks
Lean Design Process

- Cross-functional teams increases worker flexibility
- Tasks should all contribute to the delivery of the product
 - No unnecessary steps
 - Minimal paperwork
- Tasks should be done just-in-time
- Changes made immediately, not aggregated
- Transparency in the product development flow
- Eliminate rework
- Increase sharing between products (minimal redesign)

Lean Design

- How do you
 - design to reduce inventory?
 - design to reduce waste?
 - increase worker flexibility
 - enable working in cell
Logistics

• Traditional
 – Movement of goods and materials from point to point along the supply chain
 – Aggregated information about customer needs and long-term forecasts drive production cycle
 – Use buffers and inventory to reduce uncertainty

• New Logistics
 – Continuous delivery of small batches of parts precisely as they are needed
 – Information organizers
 – Responsive to changes in customer demands
 – Automatically route the right material to the right person at the right time
 – Use good information and rapid transport to reduce uncertainty
Methods to improve logistics

- Incremental changes
 - Improve communication
 - Improve visibility
 - Extended enterprise models (I2)
- Fundamental changes
 - Levis
 - Dell

Why visibility into delivery times?

- Want to be ready when delivery comes in.
- Easier to develop contingency plans
Delayed Differentiation

Assembly Sequence
Benefits of Late Differentiation

- Easier to control
- Faster reaction to customer requirement
- Lower inventory costs
- Fewer interfaces
Lecture 15: Make Buy Decisions, Supplier Relations

• Reading
 – J. P. Womack, D. T. Jones, and D. Roos, The Machine that Changed the World "Chapter 6: Coordinating the Supply Chain"

• Questions
 – What are the different supplier relationships?
 – How are supplier relationships dependent on the product architecture?
 – Why are companies still struggling with implementing "best practices"?