For problems 1-4, a register machine consists of an infinite number of memory locations, named Register 1, Register 2, Register 3, and so on, each of which is capable of holding a natural number. A register program is a finite numbered list of instructions, which take the following five forms:

Add 1 to the number in Register i.
Subtract 1 from the number in Register j, unless that number is already 0.
If the number in Register k is 0, go to instruction m
Go to instruction n.
STOP.

A computation starts at the first instruction, and proceeds from an instruction to the next, unless instructed otherwise. To calculate an n-ary function, begin with the inputs in Registers 1 through n. If the computation eventually reaches the STOP instruction, the computation halts, and the number in Register 1 is the output. If the computation never reaches the STOP instruction, the function is undefined for that input. For example, the following program computes the successor function:

1. Add 1 to Register 1.
2. Stop.

The following program computes the characteristic function of the identity relation, the binary function that yields output 1 if x = y and 0 if x ≠ y:

1. If the number in Register 1 is 0, go to instruction 6.
2. If the number in Register 2 is 0, go to instruction 10.
3. Subtract 1 from the number in Register 1, unless that number is already 0.
4. Subtract 1 from the number in Register 2, unless that number is already 0.
5. Go to instruction 1.
6. If the number in Register 2 is 0, go to instruction 8.
7. STOP.
8. Add 1 to the number in Register 1.
9. STOP.
10. Subtract 1 from the number in Register 1, unless that number is already 0.
11. If the number in Register 1 is 0, go to instruction 9.

1. Write a register program that calculates Min(x,y).
2. Write a register program that calculates Max(x,y).
3. Write a register program that calculates (x + y).
4. Write a register program that calculates (x• y).
5. Show that the function #, given by the following specification, is a Σ function:
 \[x \# \ 0 = 1, \]
 \[x \# sy = (x \ E (x \# y)). \]
6. Show that, if \(f \) is a \(\Sigma \) total function, the function \(g \) given by

\[
g(n) = \sum_{i=0}^{n} f(i)
\]

is \(\Sigma \).

7. Recall that the closed terms of the language of arithmetic constitute the smallest class of expressions that:

- contains “0”
- contains \(s \tau \) whenever it contains \(\tau \); and
- contains \((\tau + \rho) \), \((\tau \cdot \rho) \), and \((\tau \mid \rho) \) whenever it contains \(\tau \) and \(\rho \).

Give an algorithm for determining whether a string of symbols is a closed term.

8. Let \(\mathcal{A} \) be a nonstandard model of true arithmetic. Show that there is no formula \(\phi(x) \) of the language of arithmetic that is satisfied by all the standard numbers of the model and none of the nonstandard numbers.

9. Prove the Overspill Principle: If \(\phi(x) \) is a formula of the language of arithmetic that is satisfied by arbitrarily large standard elements of a nonstandard model \(\mathcal{A} \) of true arithmetic, then \(\phi(x) \) is satisfied by some nonstandard elements as well.