Outline

1. Introduction to Character Tables
2. The Character Table for C_{2v}
3. The Character Table for C_{3v}
From the preface to his book on group theory:

Wigner relates a conversation with von Laue on the use of group theory as the natural tool with which to tackle problems in quantum mechanics. “I like to recall his question as to which results... I considered most important. My answer was that the explanation of Laporte’s rule (the concept of parity) and the quantum theory of the vector addition model appeared to me most significant. Since that time, I have come to agree with his answer that the recognition that almost all rules of spectroscopy follow from the symmetry of the problem is the most remarkable result.”
What Makes Up a Character Table
Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

1. **At the upper left is the symbol for the point group**
2. The top row shows the operations of the point group, organized into classes
3. The left column gives the Mulliken symbols for each of the irreducible representations
4. The rows at the center of the table give the characters of the irreducible representations
5. Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis
What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group.

Five parts of a character table:

1. At the upper left is the symbol for the point group.
2. The top row shows the operations of the point group, organized into classes.
3. The left column gives the Mulliken symbols for each of the irreducible representations.
4. The rows at the center of the table give the characters of the irreducible representations.
5. Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis.
What Makes Up a Character Table
Character tables contain information about how functions transform in response to the operations of the group.

Five parts of a character table

1. At the upper left is the symbol for the point group.
2. The top row shows the operations of the point group, organized into classes.
3. The left column gives the Mulliken symbols for each of the irreducible representations.
4. The rows at the center of the table give the characters of the irreducible representations.
5. Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis.
What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group.

Five parts of a character table

1. At the upper left is the symbol for the point group.
2. The top row shows the operations of the point group, organized into classes.
3. The left column gives the Mulliken symbols for each of the irreducible representations.
4. The rows at the center of the table give the characters of the irreducible representations.
5. Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis.
What Makes Up a Character Table
Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

1. At the upper left is the symbol for the point group
2. The top row shows the operations of the point group, organized into classes
3. The left column gives the Mulliken symbols for each of the irreducible representations
4. The rows at the center of the table give the characters of the irreducible representations
5. Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis
The \(C_{2v} \) Character Table

<table>
<thead>
<tr>
<th>(C_{2v})</th>
<th>(E)</th>
<th>(C_2)</th>
<th>(\sigma_v(xz))</th>
<th>(\sigma'_v(yz))</th>
<th>(z)</th>
<th>(x^2, y^2, z^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(z)</td>
<td>(x^2, y^2, z^2)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
<td>1</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(R_z)</td>
<td>(xy)</td>
</tr>
<tr>
<td>(B_1)</td>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
<td>(x, R_y)</td>
<td>(xz)</td>
</tr>
<tr>
<td>(B_2)</td>
<td>1</td>
<td>(-1)</td>
<td>(-1)</td>
<td>1</td>
<td>(y, R_x)</td>
<td>(yz)</td>
</tr>
</tbody>
</table>
Transformation Properties of an s Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of an s Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of an s Orbital in C_{2v}

The E operation returns the original configuration of the s orbital

The result of this corresponds to a character of 1
Transformation Properties of an s Orbital in C_{2v}

The E operation returns the original configuration of the s orbital.

- The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in C_{2v}

What happens when the C_2 operation is applied?

The C_2 operation is a rotation by 180° about the z axis
Transformation Properties of an s Orbital in C_{2v}

What happens when the C_2 operation is applied?

- The C_2 operation is a rotation by 180° about the z axis
Transformation Properties of an s Orbital in C_{2v}

The C_2 operation returns the original configuration of the s orbital.

The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in C_{2v}

The C_2 operation returns the original configuration of the s orbital.

- The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane.
Transformation Properties of an s Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane.
Transformation Properties of an \(s \) Orbital in \(C_{2v} \)

The \(\sigma_v(xz) \) operation returns the original configuration of the \(s \) orbital.

The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in C_{2v}

The $\sigma_v(xz)$ operation returns the original configuration of the s orbital.

The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in $C_{2\nu}$

What happens when the $\sigma'_v(yz)$ operation is applied?

The $\sigma'_v(yz)$ operation is a reflection through the yz plane.
Transformation Properties of an s Orbital in C_{2v}
What happens when the $\sigma'_v(yz)$ operation is applied?

- The $\sigma'_v(yz)$ operation is a reflection through the yz plane
Transformation Properties of an s Orbital in C_{2v}

The $\sigma'_v(yz)$ operation returns the original configuration of the s orbital.

The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital in C_{2v}

The $\sigma'_v(yz)$ operation returns the original configuration of the s orbital.

- The result of this corresponds to a character of 1.
Transformation Properties of an s Orbital

These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric (A_1) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate
Consider an s orbital located on a central atom.

An example of a central atom is O in the case of water, or N in the case of ammonia.

Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration.

The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric (A_1) irreducible representation.

All the characters of the totally symmetric irreducible representation are 1.

The totally symmetric irreducible representation is always singly degenerate.
Consider an s orbital located on a central atom

An example of a central atom is O in the case of water, or N in the case of ammonia

Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration

The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric \((A_1) \) irreducible representation

All the characters of the totally symmetric irreducible representation are 1

The totally symmetric irreducible representation is always singly degenerate
Transformation Properties of an s Orbital
These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric (A_1) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate
Transformation Properties of an s Orbital

These observations pertain to any central-atom s orbital in any point group.

- Consider an s orbital located on a central atom.
- An example of a central atom is O in the case of water, or N in the case of ammonia.
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration.
- The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric (A_1) irreducible representation.
- All the characters of the totally symmetric irreducible representation are 1.
- The totally symmetric irreducible representation is always singly degenerate.
Transformation Properties of an s Orbital

These observations pertain to any central-atom s orbital in any point group.

- Consider an s orbital located on a central atom.
- An example of a central atom is O in the case of water, or N in the case of ammonia.
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration.
- The central-atom s orbital “belongs to” or “serves as a basis for” the totally symmetric (A_1) irreducible representation.
- All the characters of the totally symmetric irreducible representation are 1.
- The totally symmetric irreducible representation is always singly degenerate.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the E operation is applied?

The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis
Transformation Properties of a p_x Orbital in C_{2v}

The E operation returns the original configuration of the p_x orbital

The result of this corresponds to a character of 1
Transformation Properties of a p_x Orbital in C_{2v}

The E operation returns the original configuration of the p_x orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the C_2 operation is applied?

The C_2 operation is a rotation by 180° about the z axis.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the C_2 operation is applied?

- The C_2 operation is a rotation by 180° about the z axis
Transformation Properties of a p_x Orbital in C_{2v}

The C_2 operation inverts the phase of the p_x orbital.

The result of this corresponds to a character of -1.

\[\text{The result of this corresponds to a character of } -1 \]
Transformation Properties of a p_x Orbital in C_{2v}

The C_2 operation inverts the phase of the p_x orbital.

The result of this corresponds to a character of -1.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

The $\sigma_v(xz)$ operation is a reflection through the xz plane.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane
Transformation Properties of a p_x Orbital in C_{2v}

The $\sigma_v(xz)$ operation does nothing to the phase of the p_x orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_x Orbital in C_{2v}

The $\sigma_v(xz)$ operation does nothing to the phase of the p_x orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the $\sigma'_{v}(yz)$ operation is applied?

- The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_x Orbital in C_{2v}

What happens when the $\sigma'_v(yz)$ operation is applied?

The $\sigma'_v(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_x Orbital in C_{2v}

The $\sigma'_{v}(yz)$ operation inverts the phase of the p_x orbital.

- The result of this corresponds to a character of -1.
Transformation Properties of a p_x Orbital in C_{2v}

The $\sigma'_v(yz)$ operation inverts the phase of the p_x orbital.

The result of this corresponds to a character of -1.
A p_x Orbital has B_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_x orbital.
- This generated the following row of characters: 1, -1, 1, -1.
- This row of characters in the C_{2v} character table is labeled B_1.
- Any orbital having these transformation properties in C_{2v} is said to have B_1 symmetry.
A p_x Orbital has B_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_x orbital.
- This generated the following row of characters: $1, -1, 1, -1$.
- This row of characters in the C_{2v} character table is labeled B_1.
- Any orbital having these transformation properties in C_{2v} is said to have B_1 symmetry.
A \(p_x \) Orbital has \(B_1 \) Symmetry in \(C_{2v} \)

- We carried out the operations of \(C_{2v} \) on a central-atom \(p_x \) orbital
- This generated the following row of characters: \(1, -1, 1, -1 \)
- This row of characters in the \(C_{2v} \) character table is labeled \(B_1 \)
- Any orbital having these transformation properties in \(C_{2v} \) is said to have \(B_1 \) symmetry
A \(p_x \) Orbital has \(B_1 \) Symmetry in \(C_{2v} \)

- We carried out the operations of \(C_{2v} \) on a central-atom \(p_x \) orbital.
- This generated the following row of characters: 1, \(-1\), 1, \(-1\).
- This row of characters in the \(C_{2v} \) character table is labeled \(B_1 \).
- Any orbital having these transformation properties in \(C_{2v} \) is said to have \(B_1 \) symmetry.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the E operation is applied?

The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of a p_y Orbital in C_{2v}

The E operation returns the original configuration of the p_y orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_y Orbital in C_{2v}

The E operation returns the original configuration of the p_y orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the C_2 operation is applied?

The C_2 operation is a rotation by 180° about the z axis.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the C_2 operation is applied?

- The C_2 operation is a rotation by 180° about the z axis.
Transformation Properties of a p_y Orbital in C_{2v}

The C_2 operation inverts the phase of the p_y orbital.

The result of this corresponds to a character of -1.

Transformation Properties of a p_y Orbital in C_{2v}

The C_2 operation inverts the phase of the p_y orbital.

- The result of this corresponds to a character of -1.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane

\[\sigma_v(xz) \]
Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma_v(xz)$ operation inverts the phase of the p_y orbital.

The result of this corresponds to a character of -1.
Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma_v(xz)$ operation inverts the phase of the p_y orbital.

The result of this corresponds to a character of -1.
Transformation Properties of a p_y Orbital in C_{2v}
What happens when the $\sigma'_{v}(yz)$ operation is applied?

The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_y Orbital in C_{2v}

What happens when the $\sigma'_v(yz)$ operation is applied?

- The $\sigma'_v(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma'_v(yz)$ operation does nothing to the phase of the p_y orbital. The result of this corresponds to a character of 1.
Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma'_v(yz)$ operation does nothing to the phase of the p_y orbital.

- The result of this corresponds to a character of 1.
A p_y Orbital has B_2 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: $1, -1, -1, 1$
- This row of characters in the C_{2v} character table is labeled B_2
- Any orbital having these transformation properties in C_{2v} is said to have B_2 symmetry
A \(p_y \) Orbital has \(B_2 \) Symmetry in \(C_{2v} \)

- We carried out the operations of \(C_{2v} \) on a central-atom \(p_y \) orbital
- This generated the following row of characters: 1, \(-1\), \(-1\), 1
- This row of characters in the \(C_{2v} \) character table is labeled \(B_2 \)
- Any orbital having these transformation properties in \(C_{2v} \) is said to have \(B_2 \) symmetry
A p_y Orbital has B_2 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: 1, -1, -1, 1
- This row of characters in the C_{2v} character table is labeled B_2
- Any orbital having these transformation properties in C_{2v} is said to have B_2 symmetry
A p_y Orbital has B_2 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_y orbital.
- This generated the following row of characters: $1, -1, -1, 1$.
- This row of characters in the C_{2v} character table is labeled B_2.
- Any orbital having these transformation properties in C_{2v} is said to have B_2 symmetry.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis.
Transformation Properties of a p_z Orbital in C_{2v}

The E operation returns the original configuration of the p_z orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_z Orbital in C_{2v}

The E operation returns the original configuration of the p_z orbital

- The result of this corresponds to a character of 1
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the C_2 operation is applied?

The C_2 operation is a rotation by 180° about the z axis.
Transformation Properties of a \(p_z \) Orbital in \(C_{2v} \)

What happens when the \(C_2 \) operation is applied?

- The \(C_2 \) operation is a rotation by 180° about the \(z \) axis
Transformation Properties of a p_z Orbital in C_{2v}

The C_2 operation does nothing to the phase of the p_z orbital. The result of this corresponds to a character of 1.
Transformation Properties of a p_z Orbital in C_{2v}

The C_2 operation does nothing to the phase of the p_z orbital.

- The result of this corresponds to a character of 1.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

- The $\sigma_v(xz)$ operation is a reflection through the xz plane
Transformation Properties of a p_z Orbital in C_{2v}

The $\sigma_v(xz)$ operation inverts the phase of the p_z orbital.

The result of this corresponds to a character of 1.
Transformation Properties of a p_z Orbital in C_{2v}

The $\sigma_v(xz)$ operation inverts the phase of the p_z orbital. The result of this corresponds to a character of 1.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the $\sigma'_v(yz)$ operation is applied?

The $\sigma'_v(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_z Orbital in C_{2v}

What happens when the $\sigma'_v(yz)$ operation is applied?

- The $\sigma'_v(yz)$ operation is a reflection through the yz plane.
Transformation Properties of a p_z Orbital in C_{2v}

The $\sigma'_{y}(yz)$ operation does nothing to the phase of the p_z orbital

The result of this corresponds to a character of 1
Transformation Properties of a p_z Orbital in C_{2v}

The $\sigma'_v(yz)$ operation does nothing to the phase of the p_z orbital.

The result of this corresponds to a character of 1.
A p_z Orbital has A_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_z orbital.
- This generated the following row of characters: 1, 1, 1, 1.
- This row of characters in the C_{2v} character table is labeled A_1.
- Any orbital having these transformation properties in C_{2v} is said to have A_1 symmetry.
A p_z Orbital has A_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_z orbital
- This generated the following row of characters: 1, 1, 1, 1
- This row of characters in the C_{2v} character table is labeled A_1
- Any orbital having these transformation properties in C_{2v} is said to have A_1 symmetry
A p_z Orbital has A_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_z orbital.
- This generated the following row of characters: 1, 1, 1, 1.
- This row of characters in the C_{2v} character table is labeled A_1.
- Any orbital having these transformation properties in C_{2v} is said to have A_1 symmetry.
A p_z Orbital has A_1 Symmetry in C_{2v}

- We carried out the operations of C_{2v} on a central-atom p_z orbital.
- This generated the following row of characters: 1, 1, 1, 1.
- This row of characters in the C_{2v} character table is labeled A_1.
- Any orbital having these transformation properties in C_{2v} is said to have A_1 symmetry.
Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group
Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- “Orbitals of the same symmetry” belong to the same irreducible representation
- For the C_2v water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group
Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- “Orbitals of the same symmetry” belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group
Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix.
- “Orbitals of the same symmetry” belong to the same irreducible representation.
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not.
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group.
The C_{2v} Character Table

<table>
<thead>
<tr>
<th>C_{2v}</th>
<th>E</th>
<th>C_2</th>
<th>$\sigma_v(xz)$</th>
<th>$\sigma'_v(yz)$</th>
<th>z</th>
<th>x^2, y^2, z^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>x^2, y^2, z^2</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>R_z</td>
<td>xy</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>x, R_y</td>
<td>xz</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>y, R_x</td>
<td>yz</td>
</tr>
</tbody>
</table>
The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry.
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen p_x orbital.
- The two hydrogen 1s orbitals give rise to linear combinations of A_1 and B_2 symmetry.
- The O-H bonding molecular orbitals must likewise be of A_1 and B_2 symmetry.
- Given that all the irreducible representations of C_{2v} are singly degenerate, so must be all the MOs of the water molecule.
The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry.
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen p_x orbital.
- The two hydrogen 1s orbitals give rise to linear combinations of A_1 and B_2 symmetry.
- The O-H bonding molecular orbitals must likewise be of A_1 and B_2 symmetry.
- Given that all the irreducible representations of C_{2v} are singly degenerate, so must be all the MOs of the water molecule.
The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen p_x orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A_1 and B_2 symmetry
- The O-H bonding molecular orbitals must likewise be of A_1 and B_2 symmetry
- Given that all the irreducible representations of C_{2v} are singly degenerate, so must be all the MOs of the water molecule
The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry.
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen p_x orbital.
- The two hydrogen 1s orbitals give rise to linear combinations of A_1 and B_2 symmetry.
- The O-H bonding molecular orbitals must likewise be of A_1 and B_2 symmetry.

Given that all the irreducible representations of C_{2v} are singly degenerate, so must be all the MOs of the water molecule.
The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry.
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen p_x orbital.
- The two hydrogen 1s orbitals give rise to linear combinations of A_1 and B_2 symmetry.
- The O-H bonding molecular orbitals must likewise be of A_1 and B_2 symmetry.
- Given that all the irreducible representations of C_{2v} are singly degenerate, so must be all the MOs of the water molecule.
Molecular Orbitals for Water (H₂O)

The five occupied and the lowest three unoccupied molecular orbitals of the isolated molecule \((1a_{1})^{2}(2a_{1})^{2}(1b_{2})^{2}(3a_{1})^{2}(1b_{1})^{2}\) were calculated using the Restricted Hartree-Fock wave function (RHF) using the 6-31G** basis set (experimental data is given in [1289]). They are set out with the lowest energy (that is, most negative energy) molecular orbitals at the bottom. They are all given in the xz plane (z-axis upwards) except \(1b_{1}\) and \(3a_{1}\), which are in the yz plane (z-axis upwards).\(^{a}\) The two lowest energy orbitals \(1a_{1}\) and \(2a_{1}\) are contributed from the 1s and 2s (mostly) orbitals of the oxygen atom, respectively, and are consequentially approximately spherical. The three highest energy occupied orbitals \((1b_{2}, 3a_{1}, 1b_{1})\) are orthogonal around the oxygen atom and without obvious \(sp^{3}\) hybridization characteristics.

The relative energies of these orbitals have been found to be somewhat different from these theoretical values. The lowest energy transitions are broad at 7.61 and 9.36 eV for the \(3s/4a_{1} \leftrightarrow 1b_{1}\) (\(\tilde{A}\) \(1^{1}B_{1}\)) and \(3s/4a_{1} \leftrightarrow 3a_{1}\) (\(\tilde{B}\) \(2^{1}A_{1}\)) transitions respectively [1561] for the gas phase and at 8.09 and 9.74 eV in the liquid [1561, 1562].

The highest occupied molecular orbital (HOMO), \(1b_{1}\), is predominantly \(p_{z}^{2}\) in character with no contribution from the hydrogen 1s
The C_{3v} Character Table

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_{3}$</th>
<th>$3\sigma_v$</th>
<th>$x^2 + y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>R_z</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>$(x, y)(R_x, R_y)$</td>
</tr>
</tbody>
</table>

- Note that the E irreducible representation begins with a 2.
- This means that orbitals of E symmetry in C_{3v} are doubly degenerate.
The C_{3v} Character Table

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
<th>$x^2 + y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>R_z</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>$(x, y)(R_x, R_y)$</td>
</tr>
</tbody>
</table>

- Note that the E irreducible representation begins with a 2.
- This means that orbitals of E symmetry in C_{3v} are doubly degenerate.
The C_{3v} Character Table

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
<th>z</th>
<th>$x^2 + y^2, z^2$</th>
<th>R_z</th>
<th>$(x, y)(R_x, R_y)$</th>
<th>$(x^2 - y^2, xy)(xz, yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>$x^2 + y^2, z^2$</td>
<td>R_z</td>
<td>$(x, y)(R_x, R_y)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>R_z</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
<td>$(x, y)(R_x, R_y)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>$(x, y)(R_x, R_y)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
<td></td>
</tr>
</tbody>
</table>

- Note that the E irreducible representation begins with a 2.
- This means that orbitals of E symmetry in C_{3v} are doubly degenerate.
The C_{3v} Character Table

120° rotation, clockwise about z

$x' = -\frac{1}{2}x - \frac{\sqrt{3}}{2}y$

$y' = \frac{\sqrt{3}}{2}x - \frac{1}{2}y$
The C_{3v} Character Table

120° rotation, clockwise about z

\[x' = \frac{1}{2} x - \frac{\sqrt{3}}{2} y \]
\[y' = \frac{\sqrt{3}}{2} x - \frac{1}{2} y \]
The C_{3v} Character Table: Definition of “Character”

- a character is the trace of a matrix
- that means the sum of its diagonal elements
- physically, it means the amount of the original function remaining after the operation
- here, C_3 on (x, y) gives a character of $-\frac{1}{2} - \frac{1}{2} = -1$
a character is the trace of a matrix
that means the sum of its diagonal elements
physically, it means the amount of the original function remaining after the operation
here, C_3 on (x, y) gives a character of $-\frac{1}{2} - \frac{1}{2} = -1$
The C_{3v} Character Table: Definition of “Character”

• a *character* is the trace of a matrix
• that means the sum of its diagonal elements
• physically, it means the amount of the original function remaining after the operation
• here, C_3 on (x, y) gives a character of $\frac{-1}{2} - \frac{1}{2} = -1$
The C_{3v} Character Table: Definition of “Character”

- A *character* is the trace of a matrix
- That means the sum of its diagonal elements
- Physically, it means the amount of the original function remaining after the operation
- Here, C_3 on (x, y) gives a character of $-\frac{1}{2} - \frac{1}{2} = -1$
The C_{3v} Character Table

Reflection through the yz plane:

- $x' = -1x + 0y$
- $y' = 0x + 1y$

Character = $-1 + 1 = 0$
The C_{3v} Character Table

reflection, through another σ_v plane

$x' = \frac{1}{2} x + \frac{\sqrt{3}}{2} y$

$y' = \frac{\sqrt{3}}{2} x - \frac{1}{2} y$

character $= \frac{1}{2} - \frac{1}{2} = 0$
The C_{3v} Character Table

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>$x^2 + y^2, z^2$</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>R_z</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>$(x, y)(R_x, R_y)$</td>
<td>$(x^2 - y^2, xy)(xz, yz)$</td>
</tr>
</tbody>
</table>
The O_h Character Table

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
<th>$x^2 + y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>R_z</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>$(x, y)(R_x, R_y)$</td>
</tr>
</tbody>
</table>
Molecular Orbital Diagram for Ammonia, NH$_3$
Highest Occupied MO of Ammonia, NH$_3$
E Symmetry Bonding MO of Ammonia, NH₃