Exercise 5-1: Consider the buffer shown below. Using the SCS MOSFET model to perform a large-signal analysis of their circuit according to the following steps.

(a) Assuming that the MOSFET operates in its saturation region, show that v_{OUT} is related to v_{IN} according to

$$v_{OUT} = \left[\sqrt{\frac{2}{RK}} + 4(\frac{v_{IN} - v_T}{2} - \sqrt{\frac{2}{RK}}) \right]^2.$$

(b) Determine the range of v_{IN} over which the assumption of saturated MOSFET operation holds.
Problem 5-1: Consider again the buffer described in Exercise 5-1. Perform a small-signal analysis of this circuit according to the following steps. Assume that the MOSFET operates in its saturation region. (Hint: See Example 33 on page 203 of the notes.)

(a) Draw the small-signal circuit model of the buffer.

(b) Show that the small-signal transconductance g_m of the MOSFET is given by

$$g_m = K(V_{IN} - V_{OUT} - v_T)$$

where V_{IN} and V_{OUT} are the bias, or operating-point, input and output voltages respectively.

(c) Determine the small-signal gain of the buffer. That is, determine the ratio v_{out}/v_{in}.

(d) Determine the small-signal output resistance of the buffer. That is, determine the equivalent resistance of the buffer at the output port of its small-signal model with $v_{in} = 0$.

(e) Assume that $v_T = 1$ V, $K = 2$ mA/V2, $R = 1$ kΩ and $V_S = 10$ V. Under this assumption, design the input bias voltage to satisfy the following two objectives. First, MOSFET operation must remain within the saturation region for $|v_{in}| \leq 0.25$ V. Second, the output resistance of the small-signal model must be minimized.

(f) Again assume that $v_T = 1$ V, $K = 2$ mA/V2, $R = 1$ kΩ and $V_S = 10$ V. For $V_{IN} = 3$ V, compute the small-signal gain and output resistance.

Problem 5-2: This problem studies the relationship between the power consumed by a digital gate and the noise margin of that gate.

(a) Consider the two-input OR gate shown below. Using the switch-resistor MOSFET model also shown below, determine the maximum power dissipated by this gate and the logical inputs for which this dissipation occurs.

(b) Consider again the two-input OR gate shown above. For a given R_D, V_{OL} can be lowered by decreasing R_{ON}. What is the relationship between V_{OL} and R_{ON}? Determined the maximum power dissipated by the gate as a function of V_{OL}?
Problem 5-3: This problem studies the propagation delay of digital signals through the two circuits shown below. Circuit #1 involves two cascaded MOSFET inverters driven by the voltage v_{IN}. The output voltage of the first inverter is v_{OUT}. Circuit #2 is identical to Circuit #1 except that the first inverter in this circuit now drives two inverters at its output. In all parts of this problem, each MOSFET is characterized by the switch-resistor-capacitor model shown below.

(a) Within what voltage range must v_T fall to guarantee that the first inverter in both Circuit #1 and Circuit #2 can both turn on and turn off the inverters which follow it? Assume that v_T falls within this range.

(b) Now consider Circuit #1. Assume that v_{IN} has been at 0 V for a very long time. Then, at $t = 0$, v_{IN} increases past v_T. Determine v_{OUT} for $t \geq 0$.

(c) At what time does v_{OUT} pass by v_T? This delay approximates the fall time of the first inverter. (Fall time is actually defined as the time required for v_{OUT} to reach V_{OL} after v_{IN} passes by v_{IH}, but that subtlety is ignored here.)

(d) Next, assume that v_{IN} has been at V_S for a very long time. Then, at $t = 0$, v_{IN} decreases past v_T. Determine v_{OUT} for $t \geq 0$.

(e) At what time does v_{OUT} pass by v_T? This delay approximates the rise time of the first inverter. (Rise time is actually defined as the time required for v_{OUT} to reach V_{OH} after v_{IN} passes by v_{IL}, but that subtlety is ignored here.)

(f) Now consider Circuit #2. Determine both the turn-on and turn-off delay of the first inverter in this circuit. Hint: adapt the analysis of Circuit #1 to the analysis of Circuit #2.

(g) Is the first inverter in Circuit #2 slower or faster than the first inverter in Circuit #1. Why?