(D) Following Part A, let \(v_I(t) = V_I e^{j\omega t} \). Also, let \(v_O(t) = \hat{V}_O e^{j\omega t} \) where \(\hat{V}_O \) is a complex function of \(\omega \). With these substitutions, use the differential equation to find \(\hat{V}_O \).

(E) Following Parts A and B, find \(V_O \) and \(\phi \) from \(\hat{V}_O \), both as functions of \(\omega \).

(F) Sketch and clearly label the dependence of \(\log(V_O/V_I) \) and \(\phi \) on \(\log(\omega \tau) \), where \(\tau \) is the time constant of the circuit given below. Identify the low- and high-frequency asymptotes on the sketch.
Problem 8.3: In the network shown below, the inductor and capacitor have zero states prior to $t = 0$. At $t = 0$, a step in voltage from 0 to V_O is applied by the voltage source as shown.

(A) Find v_C, v_L, v_R, i and $\frac{di}{dt}$ at $t = 0$.
(B) Argue that $i = 0$ at $t = \infty$ so that $i(t)$ has no constant component.
(C) Find a second-order differential equation which describes the behavior of $i(t)$ for $t \geq 0$.
(D) Following (B) the current $i(t)$ takes the form $i(t) = I \sin(\omega t + \phi)e^{-\alpha t}$. Find I, ω, ϕ and α. Hint: first find ω and α from the differential equation, and then find I and ϕ from the initial conditions; alternatively, solve this problem by any method you wish.
(E) Suppose that the input is a voltage impulse with area Λ_O where $\Lambda_O = \tau V_O$. V_O is the amplitude of the voltage step shown below, and τ is a given time constant. Find the response of the network shown below to the impulse. Hint: before solving this problem directly, consider the relation between step and impulse responses.

Save a copy of your answers to this problem. They will be useful during the pre-lab exercises for Lab #3.

Problem 8.4: The network shown below is driven in steady state by the sinusoidal input voltage $v_I(t) = V_I \cos(\omega t)$. The output of the network is the voltage $v_O(t)$, which takes the form $v_O(t) = V_O \cos(\omega t + \phi)$. Find V_O and ϕ as functions of ω as follows.

(A) Using the Taylor Series expansions for e^x, $\cos(x)$ and $\sin(x)$, show that $e^{ix} = \cos(x) + j\sin(x)$. Following this, recognize that $\cos(x) = \Re\{e^{ix}\}$.
(B) Show that $A + Bj = \sqrt{A^2 + B^2} e^{j\arctan(B/A)}$. Thus, the magnitude and phase of $A + Bj$ are $\sqrt{A^2 + B^2}$ and $\arctan(B/A)$, respectively.
(C) Find a differential equation that can be solved for $v_O(t)$.
Problem 8.1: The network shown below includes two switches: #1 and #2. Prior to \(t = 0 \), both switches are closed, and the capacitor voltage \(v(t) \) and inductor current \(i(t) \) are both zero.

(A) At \(t = 0 \), Switch #1 opens, and it remains open until \(t = T_1 \). Find \(v(t) \) and \(i(t) \) for \(0 \leq t \leq T_1 \).

(B) At \(t = T_1 \), Switch #1 closes as Switch #2 simultaneously opens. They remain in these states until \(v(t) \) goes to zero, at which time Switch #2 closes. Define the time at which \(v(t) \) goes to zero as \(t = T_2 \). Determine \(T_2 \), and find \(v(t) \) and \(i(t) \) for \(T_1 \leq t \leq T_2 \).

(C) Both switches remain closed until \(t = T_3 \). Find \(v(t) \) and \(i(t) \) for \(T_2 \leq t \leq T_3 \).

(D) At \(t = T_3 \), Switch #1 again opens, and it remains open until \(t = T_4 \). Find \(v(t) \) and \(i(t) \) for \(T_3 \leq t \leq T_4 \).

(E) Finally, at \(t = T_4 \), Switch #1 closes as Switch #2 again simultaneously opens. They remain in these states until \(v(t) \) again goes to zero, at which time Switch #2 closes. Define the time at which \(v(t) \) again goes to zero as \(T_5 \). Determine \(T_5 \), and find \(v(t) \) and \(i(t) \) for \(T_4 \leq t \leq T_5 \).

(F) Sketch and clearly label \(v(t) \) and \(i(t) \) for \(0 \leq t \leq T_5 \).

\[\text{\includegraphics[width=0.5\textwidth]{network_diagram.png}} \]

Problem 8.2: This problem is a continuation of Problem 8.1. It explores the use of energy conservation to analyze the operation of the network described therein.

(A) Determine the energy stored in the capacitor at \(t = T_1 \).

(B) The energy stored in the capacitor at \(t = T_1 \) is transferred to the inductor at \(t = T_2 \). Use this fact to determine \(i(T_2) \). This answer should match the answer to Part B of Problem 8.1.

(C) Determine the energy stored in the capacitor at \(t = T_4 \).

(D) Use energy conservation to determine the energy stored in the inductor at \(t = T_5 \), and then determine \(i(T_5) \). This answer should match the answer to Part E of Problem 8.1.
Exercise 8.1: All networks shown below begin operation at $t = 0^-$ with zero capacitor voltage or zero inductor current. That is, all states are zero at $t = 0^-$. For each network, find the network state, that is the capacitor voltage or inductor current, at both $t = 0^+$ and $t = \infty$. Also find the time constant by which the network state goes from its initial value at $t = 0^+$ to its final value at $t = \infty$. Finally, without actually solving an appropriate differential equation, find the network state for each network for $0^+ \leq t \leq \infty$.

Exercise 8.2: Using one 1-µF capacitor and three resistors, construct a two-port network that has the following zero-state response to a 3-V step input as shown below. Provide a diagram of the network, and specify the values of the three resistors.