6.02 Spring 2009
Lecture #12

- Frequency Division Multiplexing
- Why Complex Exponentials
- Frequency Response and Filters
- Zeros and Poles
New Problem - Resource Sharing

- Frequency Division Multiplexing Strategy
 - Represent each channel with a different frequency
 - For LTI systems, frequencies do not mix
 \[x[n] = A_1 e^{j\Omega_1 n} + \ldots + A_K e^{j\Omega_K n} \]
 - Now need to separate the different frequencies
 - Use Filters to separate Y in to different channels
 - LTI systems with specific frequency responses
Eternal Complex Exponentials

\[x[n] = e^{0.4jn} = \cos 0.4n + j \sin 0.4n \]
Frequency Response

- From convolution

\[y[n] = \sum_{m=-\infty}^{\infty} h[m] e^{j\Omega(n-m)} \]

Reorganizing

\[y[n] = \left(\sum_{m=-\infty}^{\infty} h[m] e^{-j\Omega m} \right) e^{j\Omega n} \]

A complex number if the sum converges

\[y[n] = H(e^{j\Omega}) e^{j\Omega n} \]

\[H(e^{j\Omega}), -\pi < \Omega \leq \pi, \text{ is the frequency response} \]
Recall Channel Unit Sample Responses

Slow Channel

Fast Channel
Magnitude of Frequency Response

Slow Channel

\[|H(e^{j\Omega})| \]

Fast Channel

\[|H(e^{j\Omega})| \]
Response to Cosine starting at zero

\[x[n] = \cos(\Omega n)u[n] \quad \Omega = \left\{ \frac{\pi}{10}, \frac{2\pi}{10}, \frac{3\pi}{10} \right\} \]
Summary and Larger Picture

- **Frequency Division Multiplexing**
 - K channel’s each using a different frequency
 \[z_k = e^{j\Omega_k}, \quad 0 \leq \Omega_k \leq \pi \]

- **Filtering**
 - Design \(|H(e^{j\Omega})| \)
 - Use Zeros to eliminate undesired frequencies
 - Must be in complex-conjugate pairs \(e^{j\Omega_k}, e^{-j\Omega_k} \)
 - Use Poles to magnify desired frequency
 - Magnitude < 1, and conjugate pairs \(re^{j\Omega_k}, re^{-j\Omega_k} \quad 0 < r < 1 \)

- **After Spring Break**
 - Encoding Information using different frequencies
 - What happens when we use
 \[x[n] = A_1[n]e^{j\Omega_1n} + A_2[n]e^{j\Omega_2n} \]
 - Do the modulated complex exponentials still stay separated?