Using DFT pictures for Modulation
Examples of Plotting Spectrum

Lecture #15
6.02 Spring 2009

Digital Communication
Introduction to ECC II

SysteM
Recall Problem

\[s_1[n] \rightarrow \times \rightarrow s_2[n] \cos(\theta_1 n) \]

What does this signal look like?

\[s_2[n] \rightarrow \times \rightarrow s_2[n] \cos(-\theta_2 n) \]

\[\cos(\theta_2 n) \]

If \(\Omega_1 \gg \text{band width of } s_1 \),
Reminder about DFT
Plot Many ways

$S[k]$ vs. k

$\frac{2\pi}{N} \cdot k$

$-2\pi < k < 2\pi$

Sampling frequency

$S[k]$

$F_s = 8000$ samples/sec

$8000 \cdot \frac{\pi}{2 \pi} = f_k$

$\frac{F_s}{2}$

Relating k to f_k: $F_s \frac{2\pi}{N} \cdot k = \frac{F_s \pi}{2 \pi} = f_k$
$s[k] \text{ vs } k (73,313 \text{ samples})$
$I_C (S/k) \text{ vs } \omega$

$K [S \text{ vs } \Omega]$
Filtered $S[k]$ vs frequency (8K samp/sec)
Filterred S[k] vs k (73, 313 Samples)
Filtered S[K] vs Omega
010010 Bit sequence with slow rise
1001010 slow bit sequence (no stems)
\[u_n \cos 0.5 \pi n = [u] z \]
\[u \sin ([\gamma] \lambda) w \]

\[u \sin ([\gamma] \lambda) \Re \phi \]

\[u \cos (u \cos 0.5 \pi \cos [u] s) = [u] h \]
Problem Receiver does not know the phase
Addendum to Lec 15

The Algebra of Modulation

\(N \) assumed odd

Suppose \(\{ c[n] \} = \frac{L}{R} \sum_{k=-L}^{L} e^{j \frac{2\pi k n}{R}} \quad L \ll R \quad R = \frac{N-1}{2} \)

(L for limited)

Modulate by \(\cos \left(\frac{2\pi}{N} M n \right) \)

Assume \(M + L \leq R \)

\[w[n] = s[n] \cos \left(\frac{2\pi}{N} M n \right) \]

\(\uparrow \)

Modulated Signal

\[s[n] \quad \cos \left(\frac{2\pi}{N} M n \right) \]

\[\sum_{k=-R}^{R} w[k] e^{j \frac{2\pi k n}{N}} = \left(\sum_{k=-L}^{L} s[k] e^{j \frac{2\pi k n}{N}} \right) \frac{1}{2} e^{j \frac{2\pi M n}{N}} + \frac{1}{2} e^{-j \frac{2\pi M n}{N}} \]

Determining \(w[k] \)

\[\sum_{k=-R}^{R} w[k] e^{-j \frac{2\pi k n}{N}} = \]

\[\sum_{k=-L}^{L} s[k] e^{j \frac{2\pi k n}{N}} + \sum_{k=-L}^{L} \frac{1}{2} s[k] e^{j \frac{2\pi (k+M) n}{N}} + \sum_{k=-L}^{L} \frac{1}{2} s[k] e^{j \frac{2\pi (k-M) n}{N}} \]
\[
\sum_{k=-B}^{B} W[k] e^{-j \frac{2\pi}{N} k \theta} = \\
\sum_{k=-L+M}^{L+M} \frac{1}{2} S[k-M] e^{-j \frac{2\pi}{N} k \theta} + \\
\sum_{k=-L-M}^{L-M} \frac{1}{2} S[k+M] e^{-j \frac{2\pi}{N} k \theta}
\]

Now Assume \(M > L \)

\(M - L > 0 \quad L - M < 0 \)

\[W[k] = S[k-M] \quad k > 0 \]

\[W[k] = S[k+M] \quad k < 0 \]

\(W[k] \) is nonzero if

\[M - L \leq k \leq M + L \quad \text{or} \quad -L - M \leq k \leq L - M \]
Computing $\sum[k]$ from $s[n] = e^{j\frac{2\pi}{N}kn}$

$$\sum[k] = \sum_{n=0}^{N-1} s[n] e^{-j\frac{2\pi}{N}kn}$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}kn} e^{-j\frac{2\pi}{N}kn}$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(k-k)n}$$

If $k - k \neq 0$ $$\sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(k-k)n} = 0$$

(Summing exactly $k-k$ periods of a sine and a cosine = 0)

If $k - k = 0$ $$\sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(k-k)n} = \sum_{n=0}^{N-1} 1 = N$$

$\Rightarrow \sum[k] = N$ $k = \ell$

$\sum[k] = 0$ otherwise
0 = \mathcal{U}_n \frac{N}{2} \mathcal{E} \left[u \right] S \bigcap_{1 - N} = \left[\mathcal{U} \right] S

I + X \mathcal{U} = N \bigcap_{\mathcal{U} \mathcal{U}} \frac{N}{2} \mathcal{E} \left[\mathcal{U} \right] S \bigcap_{X} \frac{N}{I} = \left[u \right] S

(\text{Reminder about DFT (Watch for N)})

Post Lecture Recitation Notes:

\[\]
There is a relation between Fourier series index k, the sample rate f_s, and the frequency Ω_k associated with the Fourier frequency Ω_k:

\[\Omega_k = \frac{2\pi k}{f_s} \]

This is a relation between Fourier series index k, the frequency Ω_k, and the sample rate f_s.

In the following modulation example, a signal with a cosine frequency and then demodulated, once with a cosine, then shifted by $\pi/4$ and then demodulated, DFT is demodulated with a cosine at 10 times the lowest

\[u[n] = 2.0 + 0.5 \cos 0.5 \sin 2\pi n \]

\[\frac{1}{2} \text{I}_1 \]

\[U_1 \]

\[1 \text{I}_1 = N \]
Note that

$$s[n] = 2.0 + 0.5 \cos \frac{n}{2} + 2.0 \sin \frac{2n}{2}$$

Plot of $s[n]$, $\text{Re}(s[k])$, $\text{Im}(s[k])$.
Plot of \(\text{SIN}[\text{COS}1\text{OWN}]\text{COS}1\text{OWN} \)
Plot of (sin[n]cos[10\pi n])sin[10\pi n]
Note

Plot of \(\cos(10\pi n + \pi/4) \)
Plot of $\sin[n \cos(10 \pi n + \pi/4)]$
Plot of $s[n][\cos(10\pi n + \pi/4)][\cos(10\pi n)]$
Plot of \(\sin [\mu(\cos(10\mu) + \pi/4) + \mu(10\mu)] \)