Our Goals

- Engineering digital communication systems
 - Understanding key concepts
 - Exposing you to a range of important EECS ideas
- Across the different layers of the “stack”
 - Links, shared channels, multi-hop networks
- Across traditional “EE” and “CS” boundaries

Three Big Challenges

- Reliability
 - Communication is a notoriously hard problem; many things can go wrong
- Sharing
 - Dedicated links are impossibly expensive
- Scalability
 - Successful networks are large; large networks are successful (utility grows super-linearly with size)

Approach

- Understand tools and techniques
 - Concepts and principles
 - Labs
 - Small problems
- Begin to understand trade-offs
 - The essence of all engineering systems
 - Science, art, or a mix?
 - Principles and tools matter, as do intuition and experience

Experimental Apparatus

Reliability (1): Understanding Problems

- Challenge: Overcome wide range of faults
 - Inter-symbol interference, noise, bit errors, packet loss, buffer overflow, link failures, ...
- Digital abstraction
 - Key to enabling composition
 - Lab: Clock+data recovery, 8b/10b
- Inter-symbol interference
 - LTI, superposition, eye diagrams
 - Lab: unit-sample response, deconvolution
- Noise
 - Understanding Gaussians, PDFs, CDFs
 - Lab: measure, predict bit error rates
Reliability (2): Overcoming Problems

- Bit error detection + correction
 - Lab: interleaved block coding
 - Lab: Viterbi decoding of convolutional codes
- Packet loss
 - Lab: reliable transport protocols, sliding windows
- Link faults
 - Lab: routing around failures (distance vector and link-state protocols)

- Common theme: apply redundancy in creative ways

Sharing - 1

- Challenge: Communication resources aren’t free or cheap
- Sharing a common medium (channel)
 - Lab: understanding frequency response; designing filters based on zeroes and poles
 - Lab: band-limited multiple sender transmissions modulated at different carrier frequencies
 - Lab: Contention and time division MAC protocols (Aloha, CSMA, TDMA, exponential backoff)

- Reducing amount of data sent: compression

Sharing - 2

- Switches and link multiplexing
 - Circuit switching historically came first, but supports only narrow set of apps (telephony)
 - Packet switching supports wide range of applications
- Best-effort networks
- Queues and Little’s law
- Forwarding and routing functions
- Transport protocols
- Layering
- Hierarchical network design

Trade-Offs

- A number of techniques - how to apply them and make them work together?
- Reliability: apply redundancy in creative ways to build reliable systems out of unreliable components
- Sharing: reduce the amount of resources consumed
- Scalability: hide information, reduce amount of state to be managed

Example: Delivering Video over the Internet to Mobile Phones

- Compression (e.g., MPEG4/H.264, etc.)
- Reliability: Not all frames equally important
- Rate adaptation / congestion control
- Handling link losses, interference, etc.

What Should Each Layer Do?

<table>
<thead>
<tr>
<th>Application</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate (format) adaptation</td>
</tr>
<tr>
<td></td>
<td>TCP or UDP+selective reliability?</td>
</tr>
<tr>
<td>Transport</td>
<td>Forwarding & routing (and addressing)</td>
</tr>
<tr>
<td>Network</td>
<td>Framing, retry, Channel access Coding, (De)modulation</td>
</tr>
<tr>
<td>Data Link</td>
<td>How reliable should these layers be?</td>
</tr>
<tr>
<td>Physical</td>
<td>Trade-off w/ bit rate</td>
</tr>
</tbody>
</table>
EECS Ideas

- Signals and systems
 - LTI, superposition, unit-sample response, frequency response, modulation
- Algorithms, centralized and distributed
 - Trellis decoding (Viterbi), shortest paths (Dijkstra), distance vector routing (Bellman-Ford), compression (LZW, JPEG)
- Computer systems
 - Abstraction and modularity, layering, protocols, hierarchy
- Applied probability
 - Continuous-domain probability (density): reliability analysis
 - Discrete-domain probability: MAC protocol analysis
 - Basic queueing models: packet switch sharing analysis
- Methods: design, simulation, experimentation

Feedback

- Please give us your feedback
- HKN review form on web site ➔ please complete this week!
- Email/talk to us any time
- Thursday: open lab and office hours
 - Finish up remaining labs/checkoffs
 - Come and ask us anything about the material (think of it as small-group review sessions)

Discussion

- Which activities worked well?
 - Lectures
 - Recitations
 - Labs: did they help understand material? Were they interesting?
 - Online psets: how effective?
 - Review problems

- Did we cover too much? Too little?

- Would LAs help? (Would you like to be one?)