In search of a better code

- Problem: information about a particular message unit (bit, byte, ..) is captured in just a few locations, i.e., the message unit and some number of parity units. So a small but unfortunate set of errors might wipe out all the locations where that info resides, causing us to lose the original message unit.

- Potential Solution: figure out a way to spread the info in each message unit throughout all the code words in a block. Require only some fraction good code words to recover the original message.

Thought experiment...

- Suppose you had two 8-bit values to communicate: A, B
- We’d like an encoding scheme where each transmitted value included information about both A and B
 - How about sending Ax + B for various values of x?
 - Standardize on a particular sequence for x, known to both the transmitter and receiver. That way, we don’t have to actually send the x’s – the receiver will know what they are. For example, x = 1, 2, 3, 4, ...
 - How many values do you need to solve for A and B?
 - We’ll send extra to provide for recovery from errors...

Example

- Suppose you received four values from the transmitter, corresponding to x = 1, 2, 3 and 4
 - 73, 249, 321, 393
- We need a pair of values to solve for A and B; there are six possible pairs chosen from four values
 - (73,249) (73,321) (73,393) (249,321) (249,393) (321,393)
- Take each pair and solve for A and B

\[
\begin{align*}
A \cdot 1 + B &= 73 & A \cdot 1 + B &= 73 & A \cdot 1 + B &= 73 \\
A \cdot 2 + B &= 249 & A \cdot 3 + B &= 321 & A \cdot 4 + B &= 393 \\
A = 175, B = -102 & A = 124, B = -51 & A = 106.6, B = -33.6 \\
A \cdot 2 + B &= 249 & A \cdot 2 + B &= 249 & A \cdot 3 + B &= 321 \\
A \cdot 3 + B &= 321 & A \cdot 4 + B &= 393 & A \cdot 4 + B &= 393 \\
A = 72, B = 105 & A = 72, B = 105 & A = 72, B = 105
\end{align*}
\]

- Majority rules: A=72, B=105 (the 73 was an error)
Spreading the wealth...

- Idea: oversampled polynomials. Let
 \[P(x) = m_0 + m_1x + m_2x^2 + \ldots + m_{k-1}x^{k-1} \]
 where \(m_0, m_1, \ldots, m_{k-1} \) are the \(k \) message units to be encoded. Transmit value of polynomial at \(n \) different predetermined points \(v_0, v_1, \ldots, v_{n-1} \):
 \[P(v_0), P(v_1), P(v_2), \ldots, P(v_{n-1}) \]
 Use any \(k \) of the received values to construct a linear system of \(k \) equations which can then be solved for \(k \) unknowns \(m_0, m_1, \ldots, m_{k-1} \). Each transmitted value contains info about all \(m_i \).
 - Note that using integer arithmetic, the \(P(v) \) values are numerically greater than the \(m_i \) and so require more bits to represent than the \(m_i \). In general the encoded message would require a lot more bits to send than the original message!

Finite Fields to the Rescue

- Reed's & Solomon's idea: do all the arithmetic using a finite field (also called a Galois field). If the \(m_i \) have \(B \) bits, then use a finite field with order \(2^B \) so that there will be a field element corresponding to each possible value for \(m_i \).
 - For example with \(B = 2 \), here are the tables for the various arithmetic operations for a finite field with 4 elements. Note that every operation yields an element in the field, i.e., the result is the same size as the operands.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>-A</th>
<th>A⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- Solving for the \(m_j \)
 - Solving \(k \) *linearly independent* equations for the \(k \) unknowns (i.e., the \(m_j \)):
 \[
 \begin{pmatrix}
 1 & v_0 & v_0^2 & \cdots & v_0^{k-1} \\
 1 & v_1 & v_1^2 & \cdots & v_1^{k-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & v_{k-1} & v_{k-1}^2 & \cdots & v_{k-1}^{k-1}
 \end{pmatrix}
 \begin{pmatrix}
 m_0 \\
 m_1 \\
 \vdots \\
 m_{k-1}
 \end{pmatrix}
 =
 \begin{pmatrix}
 P(v_0) \\
 P(v_1) \\
 \vdots \\
 P(v_{k-1})
 \end{pmatrix}
 \]
 - Solving a set of linear equations using Gaussian Elimination (multiplying rows, switching rows, adding multiples of rows to other rows) requires add, subtract, multiply and divide operations.
 - These operations (in particular division) are only well defined over fields, e.g., rational numbers, real numbers, complex numbers -- not at all convenient to implement in hardware.

How many values to send?

- Note that in a Galois field of order \(2^B \) there are at most \(2^B \) unique values \(v \) we can use to generate the \(P(v) \)
 - if we send more than \(2^B \) values, some of the equations we might use when solving for the \(m_i \) may not be linearly independent and we won’t have enough information to find a unique solution for the \(m_i \).
 - Sending \(P(0) \) isn’t very interesting (only involves \(m_0 \))
- Reed-Solomon codes use \(n = 2^B - 1 \) (\(n \) is the number of \(P(v) \) values we generate and send).
 - For many applications \(B = 8 \), so \(n = 255 \)
 - A popular R-S code is \((255,223) \), i.e., a code block consisting of 223 8-bit data bytes + 32 check bytes
Use for error correction

• If one of the $P(v_i)$ is received incorrectly, if it's used to solve for the m_i, we'll get the wrong result.

• So try all possible $(n \text{ choose } k)$ subsets of values and use each subset to solve for m_i. Choose solution set that gets the majority of votes.
 – No winner? Uncorrectable error... throw away block.

• (n,k) code can correct up to $(n-k)/2$ errors since we need enough good values to ensure that the correct solution set gets a majority of the votes.
 – R-S $(255,223)$ code can correct up to 16 symbol errors; good for error bursts: 16 consecutive symbols = 128 bits!

Erasures are special

• If a particular received value is known to be erroneous (an “erasure”), don’t use it all!
 – How to tell when received value is erroneous? Sometimes there’s channel information, e.g., carrier disappears.
 – See next slide for clever idea based on concatenated R-S codes

• (n,k) R-S code can correct n-k erasures since we only need k equations to solve for the k unknowns.

• Any combination of E errors and S erasures can be corrected so long as $2E + S \leq n-k$.

Example: CD error correction

• On a CD: two concatenated R-S codes

![Diagram of CD error correction process]

De-interleave

(32,28) code
Handles up to 2 byte errors

De-interleave

(28,24) code
Handles up to 4 byte erasures

De-interleave

Result: correct up to 3500-bit error bursts (2.4mm on CD surface)