L10: Analog Building Blocks
(OpAmps, A/D, D/A)

Acknowledgement: Dave Wentzloff

Lecture Notes prepared by Professor Anantha Chadrakasan
Introduction to Operational Amplifiers

DC Model

- Typically very high input resistance ~ 300KΩ
- High DC gain (~10^5)
- Output resistance ~75Ω

\[V_{out} = a(f) \cdot V_{in} \]

LM741 Pinout

- +10 to +15V
- -10 to -15V

-20dB/decade

10^5

10Hz

f
The Inside of a 741 OpAmp

Differential Input Stage

Current Source for biasing

Additional Gain Stage

Output Stage

Gain is Sensitive to Operating Condition (e.g., Device, Temperature, Power supply voltage, etc.)
Simple Model for an OpAmp

Illustration of an OpAmp circuit with

- V_{CC} and $-V_{CC}$ terminals
- V_{id} input
- V_{out} output

Reasonable approximation

Linear Mode

- V_{id} and aV_{id}
- V_{out}
- $V_{id} < -\epsilon$ for Negative Saturation
- $V_{id} > \epsilon$ for Positive Saturation

Small input range for "Open" loop Configuration

$V_{id} \approx 0$

$V_{out} \approx 0$

$V_{CC} = 10V$

$V_{id} \in [-100\mu V, 100\mu V]$

$\epsilon = 100\mu V$

$V_{CC} = -10V$

$-100\mu V \leq V_{out} \leq 10V$

The Power of (Negative) Feedback

\[\frac{v_{in} + v_{id}}{R_1} + \frac{v_{out} + v_{id}}{R_2} = 0 \]

\[v_{id} = \frac{v_{out}}{a} \]

\[\frac{v_{in}}{R_1} = -\frac{v_{out}}{a} \left[\frac{1}{R_1} + \frac{a}{R_2} + \frac{1}{R_2} \right] \]

\[\frac{v_{out}}{v_{in}} = -\frac{R_2 a}{(1 + a)R_1 + R_2} \approx -\frac{R_2}{R_1} \text{ (if } a \gg 1) \]

- Overall (closed loop) gain does not depend on open loop gain
- Trade gain for robustness
- Easier analysis approach: “virtual short circuit approach”
 - \(v_+ = v_- = 0 \) if OpAmp is linear
Basic OpAmp Circuits

Voltage Follower (buffer)

\[v_{out} \approx v_{in} \]

Differential Input

\[v_{out} \approx \frac{R_2}{R_1} (v_{in2} - v_{in1}) \]

Non-inverting

\[v_{out} \approx \frac{R_1 + R_2}{R_1} v_{in} \]

Integrator

\[v_{out} \approx -\frac{1}{RC} \int_{-\infty}^{t} v_{in} dt \]
Analog Comparator:

Is $V_+ > V_-$?
The output is a DIGITAL signal

LM311 is a single supply comparator
Quantization noise exists even with ideal A/D and D/A converters.
Non-idealities in Data Conversion

Offset – a constant voltage offset that appears at the output when the digital input is 0.

Gain error – deviation of slope from ideal value of 1.

Integral Nonlinearity – maximum deviation from the ideal analog output voltage.

Differential nonlinearity – the largest increment in analog output for a 1-bit change.

Non-monotonicity
R-2R Ladder DAC Architecture

Note that the driving point impedance (resistance) is the same for each cell.

R-2R Ladder achieves large current division ratios with only two resistor values.

\[V_{out} = \frac{1}{6} V_{ref} \left[B_7 + \frac{1}{2} B_6 + \frac{1}{4} B_5 + \ldots + \frac{1}{128} B_0 \right] \]
DAC (AD 558) Specs

- 8-bit DAC
- Single Supply Operation: 5V to 15V
- Integrates required references (bandgap voltage reference)
- Uses a R-2R resistor ladder
- Settling time 1μs
- Programmable output range from 0V to 2.56V or 0V to 10V
- Simple Latch based interface
 Outputs are noisy when input bits settles, so it is best to have inputs stable before latching the input data.

Table I. AD558 Control Logic Truth Table

<table>
<thead>
<tr>
<th>Input Data</th>
<th>CE</th>
<th>CS</th>
<th>DAC Data</th>
<th>Latch Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>“Transparent”</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>“Transparent”</td>
</tr>
<tr>
<td>0</td>
<td>g</td>
<td>0</td>
<td>0</td>
<td>Latching</td>
</tr>
<tr>
<td>1</td>
<td>g</td>
<td>0</td>
<td>1</td>
<td>Latching</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>g</td>
<td>0</td>
<td>Latching</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>g</td>
<td>1</td>
<td>Latching</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>X</td>
<td>Previous Data</td>
<td>Latched</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>Previous Data</td>
<td>Latched</td>
</tr>
</tbody>
</table>

NOTES

X = Does not matter.
g = Logic Threshold at Positive-Going Transition.

Figure 6. AD558 Control Logic Function
Setting the Voltage Range

Very similar to a non-inverting amp

Strap output for different voltage ranges

Convert data to Offset binary

Input Logic Coding

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hexadecimal</th>
<th>Decimal</th>
<th>2.56 V Range</th>
<th>10.000 V Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0000 0001</td>
<td>01</td>
<td>1</td>
<td>0.010 V</td>
<td>0.039 V</td>
</tr>
<tr>
<td>0000 0010</td>
<td>02</td>
<td>2</td>
<td>0.020 V</td>
<td>0.078 V</td>
</tr>
<tr>
<td>0000 1111</td>
<td>0F</td>
<td>15</td>
<td>0.150 V</td>
<td>0.586 V</td>
</tr>
<tr>
<td>0001 0000</td>
<td>10</td>
<td>16</td>
<td>0.160 V</td>
<td>0.625 V</td>
</tr>
<tr>
<td>0111 1111</td>
<td>7F</td>
<td>127</td>
<td>1.270 V</td>
<td>4.961 V</td>
</tr>
<tr>
<td>1000 0000</td>
<td>80</td>
<td>128</td>
<td>1.280 V</td>
<td>5.000 V</td>
</tr>
<tr>
<td>1100 0000</td>
<td>C0</td>
<td>192</td>
<td>1.920 V</td>
<td>7.500 V</td>
</tr>
<tr>
<td>1111 1111</td>
<td>FF</td>
<td>255</td>
<td>2.55 V</td>
<td>9.961 V</td>
</tr>
</tbody>
</table>
Another Approach: Binary-Weighted DAC

- Switch binary-weighted currents
- MSB to LSB current ratio is 2^N

Analog Devices AD9768 uses two banks of ratioed currents

Additional current division performed by 750 Ω resistor between the two banks

$v_{out} = -IR\left(b_3 + \frac{1}{2}b_2 + \frac{1}{4}b_1 + \frac{1}{8}b_0\right)$

Reference current source
Glitching is caused when switching times in a D/A are not synchronized.

Example: Output changes from 011 to 100 – MSB switch is delayed.

Filtering reduces glitch but increases the D/A settling time.

One solution is a thermometer code D/A – requires $2^N - 1$ switches but no ratioed currents.

\[
v_{out} = -IR(T_0 + T_1 + T_2)
\]
Successive-Approximation A/D

- D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator?
- D to A generates analog voltage which is compared to the input voltage
- If D to A voltage > input voltage then set that bit; otherwise, reset that bit
- This type of A to D takes a fixed amount of time proportional to the bit length

Example: 3-bit A/D conversion, 2 LSB < V_{in} < 3 LSB
Serial conversion takes a time equal to $N(t_{D/A} + t_{comp})$
Successive-Approximation A/D (AD670)

Unipolar (BPO = 0)

2a. 0 V to 2.55 V (10 mV/LSB)

Bipolar (BPO = 1)

3a. ±1.28 V Range

<table>
<thead>
<tr>
<th>BPO/UPO</th>
<th>FORMAT</th>
<th>INPUT RANGE/OUTPUT FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Unipolar/Straight Binary</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Bipolar/Offset Binary</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Unipolar/2s Complement</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Bipolar/2s Complement</td>
</tr>
</tbody>
</table>
Single Write, Single Read Operation
(see data sheet for other modes)

- t_w (write/start pulse width) = 300ns (min)
- t_{DC} (delay to start conversion) = 700ns (max)
- t_c (conversion time) = 10ms (max)
- t_{TD} (Bus Access Time) = 250 (max)
- t_{DT} (Output Float Delay) = 150 (max)

- Control bits \overline{CE} and \overline{CS} can be wired to ground if A/D is the only chip driving the bus
- Suggestion: tie \overline{CE} and CS pins together and hardwire BPO and Format
Status should be synchronized: why?

Courtesy of James Oey and Cemal Akcaba
Example A/D Verilog Interface

```verilog
module AD670 (clk, reset, sample, dataavail, r_wbar, cs_bar, status, state);

    // System Clk
    input clk;
    // Global Reset signal, assume it is synchronized
    input reset;

    // User Interface
    input sample; output dataavail;

    // A-D Interface
    input status;
    reg status_d1, status_d2; output r_wbar, cs_bar; output [3:0] state;

    // internal state
    reg [3:0] state; reg [3:0] nextstate; reg r_wbar_int, r_wbar; reg cs_bar_int, cs_bar; reg dataavail;

    // State declarations.
    parameter IDLE = 0;
    parameter CONV0 = 1;
    parameter CONV1 = 2;
    parameter CONV2 = 3;
    parameter WAITSTATUSHIGH = 4;
    parameter WAITSTATUSLOW = 5;
    parameter READDELAY0 = 6;
    parameter READDELAY1 = 7;
    parameter READCYCLE = 8;

    always @ (posedge clk or negedge reset)
    begin
        if (!reset) state <= IDLE;
        else begin
            state <= nextstate;
            status_d1 <= status;
            status_d2 <= status_d1;
            r_wbar <= r_wbar_int;
            cs_bar <= cs_bar_int;
            end
        end
```
always @ (state or status_d2 or sample) begin
 // defaults
 r_wbar_int = 1; cs_bar_int = 1; dataavail = 0;

 case (state)
 IDLE: begin
 if(sample) nextstate = CONV0;
 else nextstate = IDLE;
 end

 CONV0: begin
 r_wbar_int = 0;
 cs_bar_int = 0;
 nextstate = CONV1;
 end

 CONV2: begin
 r_wbar_int = 0;
 cs_bar_int = 0;
 nextstate = WAITSTATUSHIGH;
 end

 WAITSTATUSHIGH: begin
 cs_bar_int = 0;
 if (status_d2) nextstate = WAITSTATUSLOW;
 else nextstate = WAITSTATUSHIGH;
 end

 WAITSTATUSLOW: begin
 cs_bar_int = 0;
 if (!status_d2) nextstate = READDELAY0;
 else nextstate = WAITSTATUSLOW;
 end
 endcase
end
Example A/D Verilog Interface (cont.)

```verilog
READDELAY0:
    begin
        cs_bar_int = 0;
        nextstate = READDELAY1;
    end

READDELAY1:
    begin
        cs_bar_int = 0;
        nextstate = READCYCLE;
    end

READCYCLE:
    begin
        cs_bar_int = 0;
        dataavail = 1;
        nextstate = IDLE;
    end

    default: nextstate = IDLE;
endcase // case(state)
end // always @ (state or status_d2 or sample)
endmodule // adcInterface
```
On reset, present state goes to 0

r_w_b must stay low for at least 3 cycles (@ 100ns period)

Sample pulse initiates data conversion

Notice a one cycle delay since A/D control signal delayed through a register

Status is synchronized – two register delays

Wait for ~10ms for status to go low

Enable read flip-flop
Flash A/D Converter

- Brute-force A/D conversion
- Simultaneously compare the analog value with every possible reference value
- Fastest method of A/D conversion
- Size scales exponentially with precision (requires 2^N comparators)

Can be implemented as OpAmp in open loop
AD 775 – Flash Data Converter

TIMING SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Conversion Rate</td>
<td>tC</td>
<td>20</td>
<td>35</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Clock Period</td>
<td>tC</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clock High</td>
<td>tCH</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clock Low</td>
<td>tCL</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Delay</td>
<td>tOD</td>
<td>18</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Pipeline Delay (Latency)</td>
<td>tDS</td>
<td>4</td>
<td>2.5</td>
<td></td>
<td>Clock Cycles</td>
</tr>
<tr>
<td>Sampling Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Aperture Jitter</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>ps</td>
</tr>
</tbody>
</table>
High Performance Converters: Use Pipelining and Parallelism!

Pipelining (used in video rate, RF basestations, etc.)

Parallelism (use many slower A/D’s in parallel to build very high speed A/D converters)

[ISSCC 2003], Poulton et. al.

20 Gsample/sec, 8-bit ADC from Agilent Labs
Summary of Analog Blocks

- Analog blocks are integral components of any system. Need data converters (analog to digital and digital to analog), analog processing (OpAmps circuits, switched capacitors filters, etc.), power converters (e.g., DC-DC conversion), etc.

- We looked at example interfaces for A/D and D/A converters
 - Make sure you register critical signals (enables, R/W, etc.)

- Analog design incorporate digital principles
 - Glitch free operation using coding
 - Parallelism and Pipelining!
 - More advanced concepts such as calibration