Lecture 13

6.111 Flat Panel Display Devices

Outline

- Overview Flat Panel Display Devices
 - How do Displays Work?
 - Emissive Displays
 - Light Valve Displays

- Display Drivers
 - Addressing Schemes
 - Display Timing Generator
 - Gray Scale / Color Schemes
Applications of Flat-Panel Displays

SMALL FORMAT
- Medical Defibrillator
- iPhone

LARGE FORMAT
- Desktop Monitor (color)
- Electronic Book
- Large Screen Television (color)

Applications
- Personal Digital Assistant
- Car Navigation & Entertainment
Some Display Terminologies

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>Picture element—The smallest unit that can be addressed to give color and intensity</td>
</tr>
<tr>
<td>Pixel Matrix</td>
<td>Number of Rows by the Number of Columns of pixels that make up the display</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Ratio of display width to display height; for example 4:3, 16:9</td>
</tr>
<tr>
<td>Resolution (ppi)</td>
<td>Number of pixels per unit length (ppi=pixels per inch)</td>
</tr>
<tr>
<td>Frame Rate (Hz)</td>
<td>Number of Frames displayed per second</td>
</tr>
<tr>
<td>Viewing Angle (°)</td>
<td>Angular range over which images from the display could be viewed without distortion</td>
</tr>
<tr>
<td>Diagonal Size</td>
<td>Length of display diagonal</td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>Ratio of the highest luminance (brightest) to the lowest luminance (darkest)</td>
</tr>
</tbody>
</table>
Information Capacity of Displays

Resolution

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Pixel</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Graphic Array (VGA)</td>
<td>640 x 480 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>Super Vedio Graphic Array (SVGA)</td>
<td>800 x 600 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>eXtended Graphic Array (XGA)</td>
<td>1,024 x 768 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>Super eXtended Graphic Array (SXGA)</td>
<td>1,280 x 1,024 RGB</td>
<td>5:4</td>
</tr>
<tr>
<td>Super eXtended Graphic Array plus (SXGA+)</td>
<td>1,400 x 1,080 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>Ultra eXtended Graphic Array (UXGA)</td>
<td>1,600 x 1,200 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>Quad eXtended Graphics Array (QXGA)</td>
<td>2048 x 1536 x RGB</td>
<td>4:3</td>
</tr>
<tr>
<td>Quad Super eXtended Graphics Array (QSXGA)</td>
<td>2560 x 2048 x RGB</td>
<td>4:3</td>
</tr>
</tbody>
</table>
How Do Displays Work?

- “Time Sequential Electrical Signals” converted into images.
 - Signals routed to the display elements (similar to memory addressing)
 - Pixels convert the electrical signal into light of color and intensity (inverse of image capture)
Human Eye—Spectral Response

![Graph showing the spectral response of the human eye. The graph plots wavelength (nm) on the x-axis and relative sensitivity on the y-axis. The colors violet, blue, green, yellow, orange, and red are indicated. The response is peaked at green.]

Figure 15. CIE Photopic Curve (Spectral Sensitivity of the Human Eye).
Classifications of Displays by Technology

- Displays could be classified into two broad categories
 - Light Generation (Emissive Displays)
 - Light Modulation (Light Valve Displays)

- Emissive Displays generate photons from electrical excitation of the picture element (pixels)
 - Cathode Ray Tubes (CRTs), Organic Light Emitting Displays (OLEDs), Plasma Displays (PDs)

- Light Valve Displays spatially and temporally modulate the intensity pattern of the picture elements (pixels)
 - Liquid Crystal Displays (LCDs), Digital Light Processors (DLPs), Electrophoretic Displays (EPDs)
Electrons beam “boiled off a metal” by heat (thermionic emission) is sequentially scanned across a phosphor screen by magnetic deflection. The electrons are accelerated to the screen acquiring energy and generate light on reaching the screen (cathodoluminescence).
Plasma Displays

- Electrons are accelerated by voltage and collide with gasses resulting in ionization and energy transfer
- Excited ions or radicals relax to give UV photons
- UV photons cause hole-electron generation in phosphor and visible light emission (photoluminescence)

Weber, SID 00 Digest, p. 402.
Organic Light Emitting Diode

Figure 1. A typical OLED multilayer device structure

Rajeswaran et al., SID 00 Digest, p. 974

17-inch Active Matrix OLED

H.-K. Chung et al., SID 05 Digest, p. 956

electroluminescence
Digital Mirror Device

Applied voltage deflects Mirror and hence direct light

Reflective Light Valves

Courtesy of Texas Instruments
Liquid Crystals rotate the plane of polarization of light when a voltage is applied across the cell

Polarization Rotator

Courtesy of Silicon Graphics
TFT AMLCD

Fluorescent Lamp (Backlight)

Diffuser

Rear Polarizer

Rear Glass w/TFT Array and Row/Column Drivers

Liquid Crystal Layer

Front Glass w/Common ITO Electrode and Color Filters

Front Polarizer

82” TFT AMLCD

K. Sarma

SID 05
Standard Display Addressing Modes

- **Sequential Addressing (pixel at a time)**
 - CRT, Laser Projection Display

- **Matrix Addressing (line at a time)**
 - Row scanning, PM LCD, AMLCD, FED, PDPs, OLEDs

- **Direct Addressing**
 - 7-segment LCD

- **Random Addressing**
 - Stroke-mode CRT
Sequential Addressing (Raster Scan)

- Time is multiplexed
 - Signal exists in a time cell
- A pixel is displayed at a time
 - Single data line
- Rigid time sequence and relative spatial location of signal
 - Raster scan
- Data rate scales with number of pixels
- Duty cycle scales with number of pixels
- Horizontal sync coordinates lines
- Vertical sync coordinates frames
- Blanking signals (vertical & horizontal) so that retraces are invisible

Scan Lines

Retrace Lines

Tannas, SID 00 Applications Seminar
The ‘frame’ is a single picture (snapshot).
- It is made up of many lines.
- Each frame has a synchronizing pulse (vertical sync).
- Each line has a synchronizing pulse (horizontal sync).
- Brightness is represented by a positive voltage.
- Horizontal and Vertical intervals both have blanking so that retraces are not seen (invisible).
Display Timing Generator Parameters

HTOT = Horizontal Total
HBS = Horizontal Blanking Start
HSS = Horizontal Sync Start
HSE = Horizontal Sync End

VTOT = Vertical Total
VBS = Vertical Blanking Start
VSS = Vertical Sync Start
VSE = Vertical Sync End
Direct vs. Matrix Addressing

Direct Driving

Segment Display
(7-segment)

Matrix Display
(dot-matrix)

Multiplex Driving

Kim, SID 2001
Matrix Addressing

- Time multiplexed
- Row at a time scanning
 - A column displayed during the time assigned to a row
- For a N rows by M columns display
 - M + N electrodes are required
- Row scanning rate scales with number of rows
- Data rate scales with number of pixels
- Duty cycle scales with number of rows
Active Matrix Addressing

- Introduce non linear device that improves the selection.

- Storage of data values on capacitor so that pixel duty cycle is 100%

- Improve brightness of display by a factor of N (# of rows) over passive matrix matrix drive

- Display element could be LC, EL, OLED, FED etc
Grey Shades Generation Techniques

Spatial Modulation
Individually selectable Areas per pixel area per dwell time

Frame Modulation
Reduced intensity by skipping frames per pixel area

Amplitude Modulation
Analog intensity at full dwell time per pixel
Grey Scale Generation
(Spatial Modulation / Frame Rate Control)

Dithering

Frame Rate Control (FRC)

Kim, SID 2001
Grey Scale Generation
(Amplitude Modulation)

Kim, SID 2001
Color Generation Techniques

Spatial Color

- Red
- Green
- Blue

Three selectable color areas per pixel area per dwell time at three times intensity

Sequential Color

One broadband emitter per pixel area addressed three times per dwell time at three times the intensity.

Coincident Color

- Red
- Green
- Blue

Three selectable transparent color areas per pixel area per dwell time at one times intensity

Electronic filter changed three times per dwell time.

- Dwell time is allotted for each pixel operation
- Pixel area is total area allotted for spatial information
Row Driver Circuits

- **Shift Registers**
 - N stage shift registers
 - Static vs Dynamic

- **Level shifters**
 - Match outside signal to signal on display

- **Output buffers**
 - Typically bi-level
Column Driver Circuits

- **Shift Registers**
 - N stage shift registers
 - Static vs Dynamic

- **Level shifters**
 - Match outside signal to signal on display

- **Output buffers**
 - Typically bi-level
Analog Data Driver

Point at a time

Line at a time

Shift Registers

Morozumi, SID 00 Seminar Notes
Digital Data Drivers

6-8 Bits Data

Shift Registers

D-to-A Converter

DACs

Analog Buffer

DACs

S/R

S/R

S/R

D1

D2

D3
Summary of Today’s Lecture

- Overview Flat Panel Display Devices
 - How do Displays Work?
 - Emissive Displays (CRTs, FEDs, OLEDs, PDs)
 - Light Valve Displays (AMLCDs, DMDs, EPDs)

- Display Drivers
 - Addressing Schemes (Sequential, Direct, Matrix, Random)
 - Display Timing Generator
 - Gray Scale (Spatial, Frame, Amplitude)
 - Color Schemes (Spatial, Sequential, Coincident)
Emissive Displays

- Displays that **generate photons** when an electrical signal is applied between the terminals

- Energy causes excitation followed by relaxation
 - Hole + Electron recombination
 - Exciton formation and annihilation
 - Relaxation of excited radicals in a plasma

- The different types of **Luminescence** differ mostly in the way the holes and electrons are generated
 - holes and electrons are generated by UV in a phosphor which then recombine and generate red, green or blue light — **Photoluminescence or Phosphorescence**
 - holes and electrons injected by pn junction or generated by impact ionization or excitation which then recombine and generate red, green or blue light — **Electroluminescence**
 - holes and electrons generated by electron beam which then recombine and generate red, green or blue light — **Cathodoluminescence**

- Examples of Emissive Flat Panel Displays
 - Electroluminescence (**Light Emitting Diode, Organic-Light Emitting Devices & In-organic ELectroluminescent Displays**)
 - Cathodoluminescence (**Cathode Ray Tube, Vacuum Florescent Display, Field Emission Display**)
 - Photoluminescence (**PLasma Displays**
Light Valve Displays

- Displays that “spatially and temporally” modulate ambient lighting or broad source of light and redirect to the eye.

- Display element spatially changes the intensity of plane wave of light using
 - Refraction
 - Reflection
 - Polarization change

- These displays are part of a broader class of devices called **Spatial Light Modulators** which in general operate though local
 - Amplitude change
 - Polarization change
 - Phase change
 - Intensity change

- **Examples of Light Valve Displays**
 - Liquid Crystal Displays (active & passive matrix)
 - Deformable Mirror Displays
 - Membrane Mirror Displays
 - Electrophoretic Displays (E-Ink)