Mapping and Navigation

Principles and Shortcuts

January 6th, 2011

Slides from Edwin Olson’s 2008 presentation
Presented by Eric Timmons etimmons@mit.edu
Goals for this talk

- Why should I build a map?

- Three mapping algorithms
 - Forgetful local map
 - Really easy, very useful over short time scales (seconds to a minute)
 - Topological roadmap
 - Also really easy, moderately useful over arbitrary time scales
 - World’s simplest—but powerful—SLAM algorithm
 - A taste of the “real thing”.
Attack Plan

- *Motivation and Advice*
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments
Why build a map?

• Playing field is big, robot is slow

• Driving around perimeter takes a minute!

• Scoring takes time… often ~20 seconds to “line up” to a mouse hole.
Maslab Mapping Goals

- Be able to efficiently move to specific locations that we have previously seen
 - I’ve got a bunch of balls, where’s the nearest goal?

- Be able to efficiently explore unseen areas
 - Don’t re-explore the same areas over and over

- Build a map for its own sake
 - No better way to wow your competition/friends/audience.
A little advice

- Mapping is hard! And it’s not required to do okay.

- Concentrate on basic robot competencies first
- Design your algorithms so that map information is helpful, but not required
- Pick your mapping algorithm judiciously
 - Pick something you’ll have time to implement and test
 - Lots of newbie gotchas, like 2pi wrap-around
Visualization

- Visualization is critical

 - *Impossible* to debug your code unless you can see what’s happening

 - Write code to view your maps and publish them!

 - Nobody will appreciate your map if they can’t see it.
Attack Plan

• Motivation and Advice
• Algorithms:
 – *Forgetful Map*
 – Topological Map
 – SLAM
• Sensor Comments
Forgetful Local Map

- It’s as good as your dead-reckoning

- Estimate your dead-reckoning error, don’t use data that’s useless.
 - Don’t throw it away though—log it.

- Easy to implement
Dead-Reckoning

Compute robot’s position in an arbitrary coordinate system

\[x = \sum d_i \cdot \cos(\theta_i) \]
\[y = \sum d_i \cdot \sin(\theta_i) \]
\[\theta_i = \sum \Delta \theta_i \]

Easy to compute:

- Get \(d_i \) from wheel encoders (or back EMF-derived velocity?)
- Get \(\Delta \theta_i \) from gyro
 - Actually, integration done for you
The problem with dead-reckoning

- Error accumulates over time
 - Really fast—errors in θ_i cause *super-linear* increases in error
 - Use zero-velocity update

- Distance error proportional to measured distance
 - Anywhere from 10-50% depending on sensors

- Gyro error mostly a function of *time*.
 - About 1-5 degrees per minute.
World’s simplest (metrical) map

- Every time you see something, record it in a list

- Looking for something?
 - Search *backwards* in the list

- Don’t use old data
 - Estimate distance/theta error by subtracting cumulative error estimates
 - If theta error > 30 degrees or so → bearing is bad
 - If distance error > 30% of distance to object → bearing is bad
 - (These constants made up– you’ll need to experiment!)

<table>
<thead>
<tr>
<th>Cumulative Distance/Orientation error</th>
<th>What</th>
<th>Location (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.2, 0.1)</td>
<td>Goal</td>
<td>(2.3, 1.1)</td>
</tr>
<tr>
<td>(0.4, 0.15)</td>
<td>Robot Pose</td>
<td>(2.0, 1.0)</td>
</tr>
<tr>
<td>(1.0, 0.2)</td>
<td>Barcode</td>
<td>2.4, 1.2)</td>
</tr>
<tr>
<td>(2.0, 0.22)</td>
<td>Barcode</td>
<td>(3.5, .3)</td>
</tr>
<tr>
<td>(2.5, 0.3)</td>
<td>Robot Pose</td>
<td>(3.0, 1.0)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Zero-velocity updates

- Gyros accumulate error as a function of integration time
 - Even if you’re not moving

- Idea: if robot is stationary, stop gyro integration → stop error accumulation
Attack Plan

• Motivation and Advice
• Algorithms:
 – Forgetful Map
 – *Topological Map*
 – SLAM
• Sensor Comments
Topological Maps

- Learn and remember invariant properties in the world:
 - “I can see barcodes 3 and 7 when I’m sitting next to barcode 12”

- De-emphasize *metrical* data
 - Maybe remember “when I drove directly from barcode 2 to barcode 7, it was about 3.5 meters”

- Very easy!
 - But you can probably only put barcodes (maybe goals) into the map
Topological Maps

- Nodes in graph are easily identifiable features
 - E.g., barcodes

- Each node lists things “near” or visible to it
 - Other bar codes
 - Goals, maybe balls

- Implicitly encode obstacles
 - Walls obstruct visibility!

- Want to get somewhere?
 - Drive to the nearest barcode, then follow the graph.
Topological Maps - Challenges

- Building map takes time
 - Repeated 360 degree sensor sweeps

- Solutions sub-optimal
 - (But better than random walk!)

- You may have to resort to random walking when your graph is incomplete

- Hard to visualize since you can’t recover the actual positions of positions
Attack Plan

• Motivation and Advice
• Algorithms:
 – Forgetful Map
 – Topological Map
 – **SLAM**
• Sensor Comments
Brute-Force SLAM

- Simultaneous Localization and Mapping (SLAM)

- The following approach is exact, complete
 - (Is used in the “real world”)
 - I’ll show a version that works, but isn’t particularly scalable.

- Break out the 18.06!
 - Weren’t paying attention? Quick refresher coming…
Quick math review

- **Linear** approximation to arbitrary functions
 - \(f(x) = x^2 \)
 - near \(x = 3 \), \(f(x) \approx 9 + 6 \,(x-3) \)
 - \(f(3) + \frac{df}{dx} \cdot (x-3) \)

- \(f(x,y,z) = (some\ mess) \)
 - near \((x_0, y_0, z_0)\): \(f(x) \approx F_0 + \begin{bmatrix} \frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} \)
Quick math review

From previous slide:

\[f(x) = f_0 + \left[\begin{array}{ccc} \frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz} \\ \Delta x & \Delta y & \Delta z \end{array} \right] \]

Re-arrange:

\[\begin{bmatrix} \frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz} \\ \Delta x & \Delta y & \Delta z \end{bmatrix} = f(x) - f_0 \]

Linear Algebra notation:

\[\mathbf{J} \mathbf{d} = \mathbf{r} \]
Example

- We observe range z_d and heading z_{θ} to a feature.
 - We express our observables in terms of the state variables ($x^* \ y^* \ \text{theta}^*$) and noise variables ($v^*$)

\[
h = \begin{cases}
 z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\
 z_{\theta} = \arctan 2(y_f - y_r \ , x_f - x_r) - x_{\theta} + v_{\theta}
\end{cases}
\]
Example

Compute a linear approximation of these constraints:

- Differentiate these constraints with respect to the state variables
- End up with something of the form $Jd = r$
Example

\[h = \begin{pmatrix}
 z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\
 z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - \theta_r + v_\theta
\end{pmatrix} \]

A convenient substitution: \(\lambda = 1/(1 + (d_y / d_x))^2 \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>(x_r)</th>
<th>(y_r)</th>
<th>(\theta_r)</th>
<th>(x_f)</th>
<th>(y_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_d)</td>
<td>(- d_x / d)</td>
<td>(- d_y / d)</td>
<td>0</td>
<td>(d_x / d)</td>
<td>(d_y / d)</td>
</tr>
<tr>
<td>(z_\theta)</td>
<td>(\lambda d_y / d_x^2)</td>
<td>(- \lambda / d_x)</td>
<td>-1</td>
<td>(- \lambda d_y / d_x^2)</td>
<td>(\lambda / d_x)</td>
</tr>
</tbody>
</table>

\[H = \text{Jacobian of } h \text{ with respect to } x \]
Metrical Map example

By convention, this pose is (0,0,0)

Unknown variables (x,y,theta) per pose

Constraints (arising from odometry)

number unknowns == number of equations, solution is critically determined.

\[d = J^{-1}r \]
The feature gives us more unknowns
Observations give us more equations

number unknowns < number of equations, solution is over determined.
Least-squares solution is:

\[d = (J^TJ)^{-1}J^Tr \]

More equations = better pose estimate
Computational Cost

- The least-squares solution to the mapping problem:

\[d = (J^T W J)^{-1} J^T W b \]
\[x_{i+1} = x_i + d \]

- Must invert* a matrix of size 3Nx3N (N = number of poses.) Inverting this matrix costs O(N^3)!
 - N is pretty small for maslab
 - How big can N get before this is a problem?

- JAMA, Java Matrix library

* We’d never actually invert it; it’s better to use a Cholesky Decomposition or something similar. But it has the same computational complexity. JAMA will do the right thing.
State of the Art

- Simple! Just solve

\[d = (J^T W J)^{-1} J^T W b \]

faster, using less memory.

(many a PhD Thesis. Hopefully good for at least one more)
Metrical Map - Weighting

- Some sensors (and constraints) better than others
- Put *weights* in block-diagonal matrix W

$$W = \text{weight of eqn 1}$$
$$W = \text{weight of eqn 2}$$

$$d = (J^T W J)^{-1} J^T Wr$$

- What is the interpretation of $J^T W J$?
What does all this math get us?

- Okay, so why bother?
Odometry Trajectory

- Integrating odometry data yields a trajectory.

- Uncertainty of pose increases at every step.
Metrical Map example

1. Original Trajectory with odometry constraints

2. Observe external feature
 Initial feature uncertainty = pose uncertainty + observation uncertainty

3. Reobserving feature helps subsequent pose estimates
Attack Plan

• Motivation and Advice
• Algorithms:
 – Forgetful Map
 – Topological Map
 – SLAM
• Sensor Comments
Getting Data - Odometry

- Roboticists bread-and-butter
 - You should use odometry in some form, if only to detect if your robot is moving as intended

- “Dead-reckoning” : estimate motion by counting wheel rotations
 - Encoders (binary or quadrature phase)
 - Maslab-style encoders are very poor

- Motor modeling
 - Model the motors, measure voltage and current across them to infer the motor angular velocity
 - Angular velocity can be used for dead-reckoning
 - Pretty lousy method, but possibly better than low-resolution flaky encoders
Getting Data - Camera

- Useful features can be extracted!
 - Lines from white/blue boundaries
 - Balls (great point features! Just delete them after you’ve moved them.)
 - “Accidental features”

- You can estimate bearing \textit{and} distance.
 - Camera mounting angle has effect on distance precision

- Triangulation
 - Make bearing measurement
 - Move robot a bit (keeping odometry error small)
 - Make another bearing measurement

More features = better navigation performance
Range finders

- Range finders are most direct way of locating walls/obstacles.

- Build a “LIDAR” by putting a range finder on a servo
 - High quality data! Great for mapping!
 - Terribly slow.
 - At least a second per scan.
 - With range of > 1 meter, you don’t have to scan very often.
 - Two range-finders = twice as fast
 - Or alternatively, 360° coverage
 - Hack servo to read analog pot directly
 - Then slew the servo in one command at maximum speed instead of stepping.
 - Add gearbox to get 360° coverage with only one range finder.
Parting Words

- Many issues we didn’t cover
 - Data Association

- Good reference:
Questions?
Extended Kalman Filter

- x: vector of all the state you care about (same as before)
- P: covariance matrix (same as $(J^TWJ)^{-1}$ before)

- **Time update:**
 - $x' = f(x,u,0)$ \(\leftarrow\) integrate odometry
 - $P = APA^T + BQB^T$ \(\leftarrow\) adding noise to covariance
 - $A = $ Jacobian of f wrt x
 - $B = $ Jacobian of noise wrt x
 - $Q = $ covariance of odometry
Metrical Map - Weighting

- Some sensors (and constraints) better than others
- Put *weights* in block-diagonal matrix W

$$W = \begin{bmatrix}
\text{weight of eqn 1} & 0 \\
0 & \text{weight of eqn 2}
\end{bmatrix}$$

$$d = (J^T W J)^{-1} J^T W r$$

- What is the interpretation of $J^T W J$?
Correlation/Covariance

- In multidimensional Gaussian problems, equal-probability contours are ellipsoids.

- Shoe size doesn’t affect grades:
 \[P(\text{grade,shoesize}) = P(\text{grade})P(\text{shoesize}) \]

- Studying helps grades:
 \[P(\text{grade,studytime}) \neq P(\text{grade})P(\text{studytime}) \]
 - We must consider \(P(x,y) \) jointly, respecting the correlation!
 - If I tell you the grade, you learn something about study time.
Why is covariance useful?

- Loop Closing (and Data Association)
- Suppose you observe a goal (with some uncertainty)
 - Which previously-known goal is it?
 - Or is it a new one?
- Covariance information helps you decide
 - If you can tell the difference between goals, you can use them as navigational landmarks!
Extended Kalman Filter

- **Observation**
 - $K = PH^T(HPH^T + VRV^T)^{-1}$ ← Kalman “gain”
 - $x' = x + K(z - h(x,0))$
 - $P = (I-KH)P$

- P is your covariance matrix
 - Just like $(J^TWJ)^{-1}$

H = Jacobian of *constraint* wrt x
B = Jacobian of noise wrt x
R = covariance of *constraint*
Kalman Filter: Properties

- You incorporate sensor observations one at a time.
- Each successive observation is the same amount of work (in terms of CPU).
- *Yet, the final estimate is the global optimal solution.*
 - The same solution we would have gotten using least-squares. Almost.

The Kalman Filter is an *optimal*, recursive estimator.
Kalman Filter: Properties

- In the limit, features become highly correlated
 - Because observing one feature gives information about other features

- Kalman filter computes the *posterior pose*, but **not** the posterior *trajectory*.
 - If you want to know the path that the robot traveled, you have to make an extra “backwards” pass.
Kalman Filter: Shortcomings

- With N features, update time is still large: $O(N^2)$!
- For Maslab, N is small. Who cares?
- In the “real world”, N can be $>>10^6$.
- Linearization Error
- Current research: lower-cost mapping methods
Old Slides
Kalman Filter

- Example: Estimating where Jill is standing:
 - Alice says: $x=2$
 - We think $\sigma^2 = 2$; she wears thick glasses
 - Bob says: $x=0$
 - We think $\sigma^2 = 1$; he’s pretty reliable

- How do we combine these measurements?
Simple Kalman Filter

• Answer: algebra (and a little calculus)!
 – Compute mean by finding maxima of the log probability of the product \(P_A P_B \).
 – Variance is messy; consider case when \(P_A = P_B = \text{N}(0,1) \)

• Try deriving these equations at home!

\[
\sigma^2 = \frac{1}{\sigma_A^2} + \frac{1}{\sigma_B^2}
\]

\[
\mu = \frac{\mu_A \sigma_B^2 + \mu_B \sigma_A^2}{\sigma_A^2 + \sigma_B^2}
\]
We now think Jill is at:

- \(x = 0.66 \)
- \(\sigma^2 = 0.66 \)

Note: Observations always reduce uncertainty
- Even in the face of conflicting information, EKF never becomes less certain.
Kalman Filter

- Now Jill steps forward one step

- We think one of Jill’s steps is about 1 meter, $\sigma^2 = 0.5$

- We estimate her position:
 - $X = X_{\text{before}} + X_{\text{change}}$
 - $\sigma^2 = \sigma_{\text{before}}^2 + \sigma_{\text{change}}^2$

- Uncertainty *increases*
Data Association

Data association: The problem of recognizing that an object you see now is the same one you saw before

- Hard for simple features (points, lines)
- Easy for “high-fidelity” features (barcodes, bunker hill monuments)

With perfect data association, most mapping problems become “easy”
Data Association

If we can’t tell when we’re reobserving a feature, we don’t learn anything!

- We need to observe the same feature twice to generate a constraint.
Data Association: Bar Codes

- Trivial!

- The Bar Codes have unique IDs; read the ID.
Data Association: Nearest Neighbor

- Nearest Neighbor
 - Simplest data association “algorithm”
 - Only tricky part is determining when you’re seeing a brand-new feature.
The blue tick marks can be used as features too.
- Probably hard to tell that a particular tick mark is the one you saw 4 minutes ago…
- You only need to reobserve the same feature *twice* to benefit!
- If you can track them over short intervals, you can use them to improve your dead-reckoning.
 - Use nearest-neighbor. Your frame-to-frame uncertainty should only be a few pixels.
Data Association: Tick Marks

- Ideal situation:
 - Lots of tick marks, randomly arranged
 - Good position estimates on all tick marks

- Then we search for a *rigid-body-transformation* that best aligns the points.
Data Association: Tick Marks

- Find a rotation that aligns the most tick marks…
 - Gives you data association for matched ticks
 - Gives you rigid body transform for the robot!

Rotation+Translation
Metrical Map: Cost Function

- Cost function *could* be arbitrarily complicated
 - Optimization of these is intractable
- We can make a local approximation around *the current pose estimates*
 - Resembles the arbitrary cost function in that neighborhood
 - Typically Gaussian
Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans
Consider each pose/feature:
- Fix all others features/poses
- Solve for the position of the unknown pose

Repeat many times
- Will converge to minimum
- Works well on small maps
Nonlinear Map Optimization

LogP/|C|: -1.443730e+08
time: 0.071
Occupancy Grids

- Divide the world into a grid
 - Each grid records whether there’s something there or not
 - Usually as a probability
 - Use current robot position estimate to fill in squares according to sensor observations
Occupancy Grids

• Easy to generate, hard to maintain accuracy
 – Basically impossible to “undo” mistakes

• Convenient for high-quality path planning

• Relatively easy to tell how well you’re doing
 – Do your sensor observations agree with your map?
FastSLAM (Gridmap variant)

- Suppose you maintain a whole bunch of occupancy maps
 - Each assuming a slightly different robot trajectory

- When a map becomes inconsistent, throw it away.

- If you have enough occupancy maps, you’ll get a good map at the end.
Gridmap, a la MASLab

- Number of maps you need increases \textit{exponentially} with distance travelled. (Rate constant related to odometry error)

- Build grid maps until odometry error becomes too large, then start a new map.

- Try to find old maps which contain data about your current position
 - Relocalization is usually hard, but you have unambiguous features to help.
Occupancy Grid: Path planning

- Use A* search
 - Finds optimal path (subject to grid resolution)
 - Large search space, but optimum answer is easy to find

- `search(start, end)`
 - Initialize `paths` = set of all paths leading out of cell “start”
 - Loop:
 - let `p` be the best path in `paths`
 - Metric = distance of the path + straight-line distance from last cell in path to goal
 - if `p` reaches `end`, return `p`
 - Extend path `p` in all possible directions, adding those paths to `paths`
Occupancy Grid: Path planning

- How do we do path planning with EKFs?
- Easiest way is to rasterize an occupancy grid on demand
 - Either all walls/obstacles must be features themselves, or
 - Remember a local occupancy grid of where walls were at each pose.
Attack Plan

• Motivation and Terminology
• Mapping Methods
 – Topological
 – Metrical
• Data Association
• Sensor Ideas and Tips
Finding a rigid-body transformation

- Method 1 (silly)
 - Search over all possible rigid-body transformations until you find one that works
 - Compare transformations using some “goodness” metric.

- Method 2 (smarter)
 - Pick two tick marks in both scene A and scene B
 - Compute the implied rigid body transformation, compute some “goodness” metric.
 - Repeat.
 - If there are N tick marks, M of which are in both scenes, how many trials do you need? Minimum: \((M/N)^2\)
 - This method is called “RANSAC”, RANdom SAmple Consenus
Attack Plan

• Motivation and Terminology
• Mapping Methods
 – Topological
 – Metrical
• Data Association
• Sensor Ideas and Tips
Debugging map-building algorithms

- You can’t debug what you can’t see.

- Produce a visualization of the map!
 - Metrical map: easy to draw
 - Topological map: draw the graph (using graphviz/dot?)
 - Display the graph via BotClient

- Write movement/sensor observations to a file to test mapping independently (and off-line)
Today’s Lab Activities
Bayesian Estimation

• Represent unknowns with probability densities
 – Often, we assume the densities are Gaussian
 \[P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
 – Or we represent arbitrary densities with particles
 • We won’t cover this today
Some constraints are better than others.

Incorporate constraint “weights”

- Weights are closely related to covariance:
 \[W = \Sigma^{-1} \]
- Covariance of poses is:
 \[A^TWA \]

In principle, equations might not represent independent constraints. But usually they are, so these terms are zero.

\[x = (A^TWA)^{-1}A^TWb \]

* Of course, “covariance” only makes good sense if we make a Gaussian assumption.
Map representations

Occupancy Grid

Pose/Feature Graph
Graph representations

- **Occupancy Grids:**
 - Useful when you have dense range information (LIDAR)
 - Hard to undo mistakes

- I don’t recommend this…
Graph representations

- Pose/Feature graphs
 - **Metrical**
 - Edges contain relative position information
 - **Topological**
 - Edges imply “connectivity”
 - Sometimes contain “costs” too (maybe even distance)

- If you store ranging measurements at each pose, you can generate an occupancy grid *from* a pose graph
Metrical Maps

Advantages:
- Optimal paths
- Easier to visualize
- Possible to distinguish different goals, use them as navigational features
- Way cooler

Disadvantages:
- There’s going to be some math.
 gasp Partial derivatives!
State Correlation/Covariance

- We observe features relative to the robot’s current position
 - Therefore, feature location estimates *covary* (or correlate) with robot pose.

- Why do we care?
 - We get the wrong answer if we don’t consider correlations
 - Covariance is useful!
Once we’ve solved for the position of each pose, we can re-project the observations of obstacles made at each pose into a coherent map

That’s why we kept track of the old poses, and why N grows!
What if we only want to estimate:
- Positions of each goal
- Positions of each barcode
- Current position of the robot?

The Kalman filter is our best choice now.
- Almost the same math!
- Not enough time to go into it: but slides are on wiki