OPTIMIZATION OVER A CONVEX SET;

OPTIMALITY CONDITIONS

Problem: \(\min_{x \in X} f(x) \), where:

(a) \(X \subset \mathbb{R}^n \) is nonempty, convex, and closed.
(b) \(f \) is continuously differentiable over \(X \).

- Local and global minima. If \(f \) is convex local minima are also global.
OPTIMALITY CONDITION

Proposition (Optimality Condition)

(a) If x^* is a local minimum of f over X, then

$$\nabla f(x^*)'(x - x^*) \geq 0, \quad \forall x \in X.$$

(b) If f is convex over X, then this condition is also sufficient for x^* to minimize f over X.

At a local minimum x^*, the gradient $\nabla f(x^*)$ makes an angle less than or equal to 90 degrees with all feasible variations $x - x^*$, $x \in X$.

Illustration of failure of the optimality condition when X is not convex. Here x^* is a local min but we have $\nabla f(x^*)'(x - x^*) < 0$ for the feasible vector x shown.
Proof: (a) By contradiction. Suppose that $\nabla f(x^*)'(x-x^*) < 0$ for some $x \in X$. By the Mean Value Theorem, for every $\epsilon > 0$ there exists an $s \in [0, 1]$ such that

$$f(x^*+\epsilon(x-x^*)) = f(x^*) + \epsilon \nabla f(x^* + s\epsilon(x-x^*))'(x-x^*).$$

Since ∇f is continuous, for suff. small $\epsilon > 0$,

$$\nabla f(x^* + s\epsilon(x-x^*))'(x-x^*) < 0$$

so that $f(x^* + \epsilon(x-x^*)) < f(x^*)$. The vector $x^* + \epsilon(x-x^*)$ is feasible for all $\epsilon \in [0, 1]$ because X is convex, so the optimality of x^* is contradicted.

(b) Using the convexity of f

$$f(x) \geq f(x^*) + \nabla f(x^*)'(x-x^*)$$

for every $x \in X$. If the condition $\nabla f(x^*)'(x-x^*) \geq 0$ holds for all $x \in X$, we obtain $f(x) \geq f(x^*)$, so x^* minimizes f over X. Q.E.D.
OPTIMIZATION SUBJECT TO BOUNDS

• Let \(X = \{ x \mid x \geq 0 \} \). Then the necessary condition for \(x^* = (x_1^*, \ldots, x_n^*) \) to be a local min is

\[
\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \geq 0, \quad \forall x_i \geq 0, \ i = 1, \ldots, n.
\]

• Fix \(i \). Let \(x_j = x_j^* \) for \(j \neq i \) and \(x_i = x_i^* + 1 \):

\[
\frac{\partial f(x^*)}{\partial x_i} \geq 0, \quad \forall i.
\]

• If \(x_i^* > 0 \), let also \(x_j = x_j^* \) for \(j \neq i \) and \(x_i = \frac{1}{2} x_i^* \). Then \(\frac{\partial f(x^*)}{\partial x_i} \leq 0 \), so

\[
\frac{\partial f(x^*)}{\partial x_i} = 0, \quad \text{if } x_i^* > 0.
\]
OPTIMIZATION OVER A SIMPLEX

\[X = \left\{ x \mid x \geq 0, \sum_{i=1}^{n} x_i = r \right\} \]

where \(r > 0 \) is a given scalar.

• Necessary condition for \(x^* = (x_1^*, \ldots, x_n^*) \) to be a local min:

\[
\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \geq 0, \quad \forall x_i \geq 0 \text{ with } \sum_{i=1}^{n} x_i = r.
\]

• Fix \(i \) with \(x_i^* > 0 \) and let \(j \) be any other index. Use \(x \) with \(x_i = 0, x_j = x_j^* + x_i^*, \) and \(x_m = x_m^* \) for all \(m \neq i, j \):

\[
\left(\frac{\partial f(x^*)}{\partial x_j} - \frac{\partial f(x^*)}{\partial x_i} \right) x_i^* \geq 0,
\]

\[x_i^* > 0 \implies \frac{\partial f(x^*)}{\partial x_i} \leq \frac{\partial f(x^*)}{\partial x_j}, \quad \forall j, \]

i.e., at the optimum, positive components have minimal (and equal) first cost derivative.
OPTIMAL ROUTING

- Given a data net, and a set W of OD pairs $w = (i, j)$. Each OD pair w has input traffic r_w.

- Optimal routing problem:

 \[
 \text{minimize} \quad D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\text{all paths } p \text{ containing } (i,j)} x_p \right)
 \]

 subject to

 \[
 \sum_{p \in P_w} x_p = r_w, \quad \forall \ w \in W,
 \]

 \[
 x_p \geq 0, \quad \forall \ p \in P_w, \ w \in W
 \]

- Optimality condition

 \[
 x^*_p > 0 \quad \Rightarrow \quad \frac{\partial D(x^*)}{\partial x_p} \leq \frac{\partial D(x^*)}{\partial x_{p'}}, \quad \forall \ p' \in P_w,
 \]

 i.e., paths carrying > 0 flow are shortest with respect to first cost derivative.
TRAFFIC ASSIGNMENT

- Transportation network with OD pairs \(w \). Each \(w \) has paths \(p \in P_w \) and traffic \(r_w \). Let \(x_p \) be the flow of path \(p \) and let \(T_{ij} \left(\sum_{p: \text{crossing } (i,j)} x_p \right) \) be the travel time of link \((i,j) \).

- **User-optimization principle:** Traffic equilibrium is established when each user of the network chooses, among all available paths, a path of minimum travel time, i.e., for all \(w \in W \) and paths \(p \in P_w \),

\[
x^*_p > 0 \implies t_p(x^*) \leq t_{p'}(x^*), \quad \forall p' \in P_w, \forall w \in W
\]

where \(t_p(x) \), is the travel time of path \(p \)

\[
t_p(x) = \sum_{\text{all arcs } (i,j) \text{ on path } p} T_{ij}(F_{ij}), \quad \forall p \in P_w, \forall w \in W.
\]

Identical with the optimality condition of the routing problem if we identify the arc travel time \(T_{ij}(F_{ij}) \) with the cost derivative \(D'_{ij}(F_{ij}) \).
PROJECTION OVER A CONVEX SET

• Let \(z \in \mathbb{R}^n \) and a closed convex set \(X \) be given. Problem:

\[
\text{minimize } f(x) = \| z - x \|^2 \\
\text{subject to } x \in X.
\]

Proposition (Projection Theorem) Problem has a unique solution \([z]^+\) (the projection of \(z \)).

Necessary and sufficient condition for \(x^* \) to be the projection. The angle between \(z - x^* \) and \(x - x^* \) should be greater or equal to 90 degrees for all \(x \in X \), or

\[
(z - x^*)'(x - x^*) \leq 0
\]

• If \(X \) is a subspace, \(z - x^* \perp X \).

• The mapping \(f : \mathbb{R}^n \leftrightarrow X \) defined by \(f(x) = [x]^+ \) is continuous and nonexpansive, that is,

\[
\|[x]^+ - [y]^+\| \leq \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.
\]