Lecture 9 - MOSFET (I)

MOSFET I-V Characteristics

March 8, 2001

Contents:

1. MOSFET: cross-section, layout, symbols
2. Qualitative operation
3. I-V characteristics

Reading assignment:

Howe and Sodini, Ch. 4, §§4.1-4.3

Announcements: Quiz #1, March 14, 7:30-9:30 PM, Walker Memorial; covers Lectures #1-9; open book; must have calculator.
Key questions

• How can carrier inversion be exploited to make a transistor?

• How does a MOSFET work?

• How does one construct a simple first-order model for the current-voltage characteristics of a MOSFET?
1. MOSFET: layout, cross-section, symbols

Key elements:

- inversion layer under gate (depending on gate voltage)
- heavily-doped regions reach underneath gate ⇒ inversion layer electrically connects source and drain
- 4-terminal device: body voltage important
Circuit symbols

Two complementary devices:

- n-channel device (n-MOSFET) on p-Si substrate (uses electron inversion layer)
- p-channel device (p-MOSFET) on n-Si substrate (uses hole inversion layer)

(a) n-channel MOSFET

(b) p-channel MOSFET
2. Qualitative operation

Water analogy of MOSFET:

- **Source**: water reservoir
- **Drain**: water reservoir
- **Gate**: gate between source and drain reservoirs

Want to understand MOSFET operation as a function of:

- gate-to-source voltage (gate height over source water level)
- drain-to-source voltage (water level difference between reservoirs)

Initially consider source tied up to body (substrate or back).
Three regimes of operation:

- **Cut-off regime:**
 - MOSFET: $V_{GS} < V_T$, $V_{GD} < V_T$ with $V_{DS} > 0$.
 - Water analogy: gate closed; no water can flow regardless of relative height of source and drain reservoirs.

$$I_D = 0$$
Linear or Triode regime:

- MOSFET: $V_{GS} > V_T$, $V_{GD} > V_T$, with $V_{DS} > 0$.

- Water analogy: gate open but small difference in height between source and drain; water flows.

Electrons drift from source to drain \Rightarrow electrical current!

- $V_{GS} \uparrow \rightarrow |Q_n| \uparrow \rightarrow I_D \uparrow$

- $V_{DS} \uparrow \rightarrow E_y \uparrow \rightarrow I_D \uparrow$
\(\Box \) **Saturation regime:**

- MOSFET: \(V_{GS} > V_T, \ V_{GD} < V_T \ (V_{DS} > 0) \).

- Water analogy: gate open; water flows from source to drain, but free-drop on drain side \(\Rightarrow \) total flow independent of relative reservoir height!

\[I_D \text{ independent of } V_{DS}: \ I_D = I_{Dsat} \]
3. I-V characteristics

Geometry of problem:

\[V_{GS} > V_{th} \]

\[V_{DS} \]

\[ID \]

\[V_{BS} \]

- General expression of channel current

Current can only flow in \(y \)-direction:

\[J_y = Q_n(y)v_y(y) \]

Total channel current:

\[I_y = WQ_n(y)v_y(y) \]

Drain current is equal to \textit{minus} channel current:

\[I_D = -WQ_n(y)v_y(y) \]
\[I_D = -WQ_n(y)v_y(y) \]

Rewrite in terms of voltage at channel location \(y \), \(V_c(y) \):

- If electric field is not too big:
 \[v_y(y) \approx -\mu_n E_y(y) = \mu_n \frac{dV_c(y)}{dy} \]

- For \(Q_n(y) \) use charge-control relation at location \(y \):
 \[Q_n(y) = -C_{ox}[V_{GS} - V_c(y) - V_T] \]
 for \(V_{GS} - V_c(y) \geq V_T \).

All together:

\[I_D = W\mu_n C_{ox}(V_{GS} - V_c(y) - V_T)\frac{dV_c(y)}{dy} \]

Simple linear first-order differential equation with one unknown, the channel voltage \(V_c(y) \).
Solve by separating variables:

\[I_D dy = W \mu_n C_{ox}(V_{GS} - V_c - V_T) dV_c \]

Integrate along the channel in the linear regime:

- for \(y = 0 \), \(V_c(0) = 0 \)
- for \(y = L \), \(V_c(L) = V_{DS} \) (linear regime)

Then:

\[I_D \int_0^L dy = W \mu_n C_{ox} \int_0^{V_{DS}} (V_{GS} - V_c - V_T) dV_c \]

or:

\[I_D = \frac{W}{L} \mu_n C_{ox} (V_{GS} - \frac{V_{DS}}{2} - V_T) V_{DS} \]
For small V_{DS}:

$$I_D \approx \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T) V_{DS}$$

Key dependencies:

- $V_{DS} \uparrow \rightarrow I_D \uparrow$ (higher lateral electric field);
- $V_{GS} \uparrow \rightarrow I_D \uparrow$ (higher electron concentration);
- $L \uparrow \rightarrow I_C \downarrow$ (lower lateral electric field).
- $W \uparrow \rightarrow I_C \uparrow$ (wider conduction channel).

This is the *linear* or *triode* regime.
In general,

\[I_D = \frac{W}{L} \mu_n C_{ox} (V_{GS} - \frac{V_{DS}}{2} - V_T) V_{DS} \]

Equation valid if \(V_{GS} - V(y) \geq V_T \) at every \(y \).

Worst point is \(y = L \), where \(V(y) = V_{DS} \), hence, equation valid if \(V_{GS} - V_{DS} \geq V_T \), or:

\[V_{DS} \leq V_{GS} - V_T \]

term responsible for bend over of \(I_D \): \(-\frac{V_{DS}}{2}\)
To understand why I_D bends over, must understand first channel debiasing:

Along channel from source to drain:

$$ y \uparrow \rightarrow V_c(y) \uparrow \rightarrow |Q_n(y)| \downarrow \rightarrow E_y(y) \uparrow $$

Local "channel overdrive" reduced closer to drain.
Impact of V_{DS}:

As $V_{DS} \uparrow$, channel de-biasing more prominent

$\Rightarrow I_D$ rises more slowly with V_{DS}
Drain current saturation

As V_{DS} approaches $V_{DSat} = V_{GS} - V_T$

increase in E_y compensated by decrease in $|Q_n|$

$\Rightarrow I_D$ saturates to:

$$I_{Dsat} = I_{Dlin}(V_{DS} = V_{DSat} = V_{GS} - V_T)$$

then

$$I_{Dsat} = \frac{W}{2L}\mu_n C_{ox}(V_{GS} - V_T)^2$$

Will talk more next time about saturation regime.
Key conclusions

- The MOSFET is a *field-effect transistor*:
 - the amount of charge in the inversion layer is controlled by the field-effect action of the gate
 - the charge in the inversion layer is mobile ⇒ conduction possible between source and drain

- In the *linear regime*:
 - \(V_{GS} \uparrow \Rightarrow I_D \uparrow \): more electrons in the channel
 - \(V_{DS} \uparrow \Rightarrow I_D \uparrow \): stronger field pulling electrons out of the source

- *Channel debiasing*: inversion layer ”thins down” from source to drain ⇒ current saturation as \(V_{DS} \) approaches:
 \[
 V_{DS_{sat}} = V_{GS} - V_T
 \]