Lecture 12 - Digital Circuits (I)

The inverter

March 20, 2001

Contents:

1. Introduction to digital electronics: the inverter
2. NMOS inverter with resistor pull up

Reading assignment:

Howe and Sodini, Ch. 5, §§5.1-5.3.2
Key questions

- What are the key figures of merit of logic circuits?
- How can one make a simple inverter using a single MOSFET?
1. Introduction to digital electronics: the inverter

In digital electronics, digitally-encoded information is represented by means of two distinct voltage ranges:

- **logic 0**: $V_{MIN} \leq V \leq V_{OL}$
- **logic 1**: $V_{OH} \leq V \leq V_{MAX}$
- **undefined logic value**: $V_{OL} \leq V \leq V_{OH}$.

Logic operations are performed using logic gates.

Simplest logic operation of all: *inversion* \Rightarrow inverter
\[\text{Ideal inverter:} \]

\[
\begin{array}{c|c}
\text{IN} & \text{OUT} \\
0 & 1 \\
1 & 0
\end{array}
\]

Circuit representation and ideal transfer function:

Define \textit{switching point} or \textit{logic threshold}:

\[V_M \equiv \text{input voltage for which } V_{OUT} = V_{IN} \]

- for \(0 \leq V_{IN} \leq V_M \) \(\Rightarrow \) \(V_{OUT} = V^+ \)
- for \(V_M \leq V_{IN} \leq V^+ \) \(\Rightarrow \) \(V_{OUT} = 0 \)

Ideal inverter returns well defined logical outputs (0 or \(V^+ \)) even in the presence of considerable noise in \(V_{IN} \) (from voltage spikes, crosstalk, etc.)

\(\Rightarrow \) signal is \textit{regenerated!}
"Real" inverter:

In a real inverter, valid logic levels defined as follows:

- **logic 0:**

 \[V_{MIN} \equiv \text{output voltage when } V_{IN} = V^+ \]

 \[V_{OL} \equiv \text{smallest output voltage where slope}=-1 \]

- **logic 1:**

 \[V_{OH} \equiv \text{largest output voltage where slope}=-1 \]

 \[V_{MAX} \equiv \text{output voltage when } V_{IN} = 0 \]
Two other important voltages:

\[V_{IL} \equiv \text{smallest input voltage where slope} = -1 \]

\[V_{IH} \equiv \text{highest input voltage where slope} = -1 \]

Need \textit{noise immunity}:
range of input values that produce acceptable logic output
> range of valid logic values

Quantify this through \textit{noise margins}.
Chain of two inverters:

Define *noise margins*:

\[
NM_H = V_{OH} - V_{IH} \quad \text{noise margin high}
\]
\[
NM_L = V_{IL} - V_{OL} \quad \text{noise margin low}
\]

When signal is within noise margins:

- logic 1 output from first inverter interpreted as logic 1 input by second inverter
- logic 0 output from first inverter interpreted as logic 0 input by second inverter
Simplifications for hand calculations

Hard to compute $A_v = -1$ points in transfer function.

Approximate calculation:

- Assume $V_{OL} \simeq V_{MIN}$ and $V_{OH} \simeq V_{MAX}$
- Trace tangent of transfer function at V_M (slope=small signal voltage gain at V_M)
- $V_{IL} \simeq$ intersection of tangent with $V_{OUT} = V_{MAX}$
- $V_{IH} \simeq$ intersection of tangent with $V_{OUT} = V_{MIN}$
- to enhance noise margin: $|A_v(V_M)| \uparrow$
\[|A_v| \simeq \frac{V_{MAX} - V_M}{V_M - V_{IL}} \Rightarrow V_{IL} \simeq V_M - \frac{V_{MAX} - V_M}{|A_v|} \]

\[|A_v| \simeq \frac{V_M - V_{MIN}}{V_{IH} - V_M} \Rightarrow V_{IH} \simeq V_M(1 + \frac{1}{|A_v|}) - \frac{V_{MIN}}{|A_v|} \]

Then:

\[NML = V_{IL} - V_{OL} \simeq (V_{MAX} - V_{MIN}) - (V_{MAX} - V_M)(1 + \frac{1}{|A_v|}) \]

\[NMH = V_{OH} - V_{IH} \simeq (V_{MAX} - V_{MIN}) - (V_M - V_{MIN})(1 + \frac{1}{|A_v|}) \]

If \(|A_v| \to \infty \):

\[NML \to V_M - V_{MIN} \quad NMH \to V_{MAX} - V_M \]
\section*{Transient characteristics}

Look at inverter switching in the time domain:

\[t_R \equiv \text{rise time between 10\% and 90\% of total swing} \]

\[t_F \equiv \text{fall time between 90\% and 10\% of total swing} \]

\[t_{PHL} \equiv \text{propagation delay from high-to-low between 50\% points} \]

\[t_{PLH} \equiv \text{propagation delay from low-to-high between 50\% points} \]

\textit{Propagation delay:} \quad t_P = \frac{1}{2}(t_{PHL} + t_{PLH})
Propagation delay: simplification for hand calculations

- Consider input wavefunction ideal square wave
- Propagation delay times = delay times to 50% point

- Hand calculations only approximate
- SPICE essential for accurate delay analysis
2. NMOS inverter with resistor pull up

Features:

• $V_{BS} = 0$ (typically not shown)

• C_L summarizes capacitive loading of following stages (other logic gates, interconnect lines)

Basic operation:

• if $V_{IN} < V_T$, MOSFET OFF $\Rightarrow V_{OUT} = V_{DD}$

• if $V_{IN} > V_T$, MOSFET ON $\Rightarrow V_{OUT}$ small (value set by resistor/nMOS divider)
Transfer function obtained by solving:

\[I_R = I_D \]

Can solve graphically: I-V characteristics of load:
Overlap I-V characteristics of resistor pull-up on I-V characteristics of transistor:

Transfer function:
Logic levels:

For V_{MAX}, transistor is cut-off, $I_D = 0$:

$$V_{MAX} = V_{DD}$$

For V_{MIN}, transistor is in linear regime; solve:

$$I_D = \frac{W}{L} \mu_n C_{ox} \left(V_{DD} - \frac{V_{MIN}}{2} - V_T \right) V_{MIN} = I_R = \frac{V_{DD} - V_{MIN}}{R}$$

For V_M, transistor is in saturation; solve:

$$I_D = \frac{W}{2L} \mu_n C_{ox} (V_M - V_T)^2 = I_R = \frac{V_{DD} - V_M}{R}$$
Noise margins:

\[V_{OUT} = V_{DS} \]
\[V_{MAX} = V_{DD} \]
\[V_{MIN} = V_{T} \]
\[A_v \]

Small-signal equivalent circuit model at \(V_M \) (transistor in saturation):

\[A_v = \frac{v_{out}}{v_{in}} = -g_m (r_o//R) \approx -g_m R \]
Key conclusions

- Logic circuits must exhibit *noise margins* in which they are immune to noise in input signal.
- Logic circuits must be *regenerative*: able to restore clean logic values even if input is noisy.
- *Propagation delay*: time for logic gate to perform its function.
- Concept of *load line*: graphical technique to visualize transfer characteristics of inverter.
- First-order solution (by hand) of inverter figures of merit easy if regimes of operation of transistor are correctly identified.
- For more accurate solutions, use SPICE (or other circuit CAD tool).