Lecture 13 - Digital Circuits (II)

MOS Inverter Circuits

March 22, 2001

Contents:

1. NMOS inverter with resistor pull-up (cont.)
2. NMOS inverter with current-source pull-up
3. Complementary MOS (CMOS) Inverter

Reading assignment:

Howe and Sodini, Ch. 5, §5.3
Key questions

• What are the key design trade-offs of the NMOS inverter with resistor pull-up?
• How can one improve upon these trade-offs?
• What is special about a CMOS inverter?
1. NMOS inverter with resistor pull-up (cont.)

- C_L pull-down limited by current through transistor [will study in detail with CMOS]
- C_L pull-up limited by resistor ($t_{PLH} \sim RC_L$)
- pull-up slowest
Inverter design issues:

noise margins $\uparrow \Rightarrow |A_v| \uparrow \Rightarrow$

- $R \uparrow \Rightarrow RC_L \uparrow \Rightarrow$ slow switching
- $g_m \uparrow \Rightarrow W \uparrow \Rightarrow$ big transistor
 (slow switching at input)

Trade-off between speed and noise margin.

During pull-up, need:

- high current for fast switching,
- but also high resistance for high noise margin.

\Rightarrow use current source as pull-up.
2. NMOS inverter with current-source pull-up

I-V characteristics of current source:

![I-V characteristics graph]

Equivalent circuit models:

- Large-signal model
- Small-signal model

- high current throughout voltage range: \(i_{SUP} \approx I_{SUP} \)
- high small-signal resistance, \(r_{oc} \).
NMOS inverter with current-source pull-up:

Transfer characteristics:

High $r_{oc} \Rightarrow$ high noise margin
Dynamics:

Faster pull-up because capacitor charged at constant current.
PMOS as current-source pull-up

I-V characteristics of PMOS:

Note: enhancement-mode PMOS has $V_{Tp} < 0$.

In saturation:

$$-I_{Dp} \propto (V_{SG} + V_{Tp})^2$$
Circuit and load-line diagram of inverter with PMOS current source pull-up:

PMOS load line for $V_{SG} = V_{DD} - V_B$

Transfer function:
Noise margin:

- compute $V_M = V_{IN} = V_{OUT}$
- compute $|A_v(V_M)|$

At V_M both transistors saturated:

$$I_{Dn} = \frac{W_n}{2L_n} \mu_n C_{ox} (V_M - V_{Tn})^2$$

$$-I_{Dp} = \frac{W_p}{2L_p} \mu_p C_{ox} (V_{DD} - V_B + V_{Tp})^2$$

And:

$$I_{Dn} = -I_{Dp}$$

Then:

$$V_M = V_{Tn} + \sqrt{\frac{W_p}{\mu_p L_p}} (V_{DD} - V_B + V_{Tp}) \sqrt{\frac{\mu_n L_n}{W_n}}$$
Small-signal equivalent circuit model at V_M:

$$A_v = -g_{mn} \left(\frac{r_{on}}{r_{op}} \right)$$
NMOS inverter with current-source pull-up allows fast switching with high noise margins.

But... when $V_{IN} = V_{DD}$, there is a direct current path between supply and ground \Rightarrow power consumption even if inverter is idling.

Would like to have current source that is itself switchable, i.e., it shuts off when input is high \Rightarrow CMOS!
3. Complementary MOS (CMOS) Inverter

Circuit schematic:

\[\text{V}_{IN} \quad \text{V}_{OUT} \quad \text{V}_{DD} \quad \text{CL} \]

Basic operation:

- \(V_{IN} = 0 \Rightarrow V_{OUT} = V_{DD} \)

 \[V_{GSn} = 0 < V_{Tn} \Rightarrow \text{NMOS OFF} \]

 \[V_{SGp} = V_{DD} > -V_{Tp} \Rightarrow \text{PMOS ON} \]

- \(V_{IN} = V_{DD} \Rightarrow V_{OUT} = 0 \)

 \[V_{GSn} = V_{DD} > V_{Tn} \Rightarrow \text{NMOS ON} \]

 \[V_{SGp} = 0 < -V_{Tp} \Rightarrow \text{PMOS OFF} \]

No power consumption while idling in any logic state.
Key conclusions

- In NMOS inverter with resistor pull-up: trade-off between noise margin and speed.
- Trade-off resolved using current-source pull-up: use PMOS as current source.
- In NMOS inverter with current-source pull-up: if $V_{IN} = HI$, power consumption even if inverter is idling.
- Complementary MOS: NMOS and PMOS switch alternatively \Rightarrow no power consumption while idling.