Lecture 9: INCUMBENT FAILURE AND NEW FIRMS

3/7/00

Lecture

• Why do incumbent firms fail
 – Architectural innovation
 – Disruptive Technology
• Assignment
 – You will be asked “why can’t company X do what you are doing” Need to justify the inability for incumbent firms to compete
 – What is your long term strategy
 • Start in incubator markets?
 • Create new markets?
Innovator’s dilemma

- Many “great” companies that are well run, fail when faced with a new technology
 - DEC, Prime, Sears
 - IBM
 - Disk drive companies
- Large companies have a hard time implementing technologies
 - Desk top computers
 - Disk drives
 - New stepper technologies
 - CS-II
 - Boeing/Airbus on determinate assembly & generic fixtures

Types of innovation

<table>
<thead>
<tr>
<th>Core technology</th>
<th>Incremental</th>
<th>Sustaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>modular</td>
<td>Disruptive</td>
</tr>
<tr>
<td>Architectural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radical</td>
<td></td>
<td>Christensen</td>
</tr>
<tr>
<td>Henderson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types

- Incremental
 - Minor changes
 - Reinforces existing capability
- Modular
 - Able to slot in new tech.
- Architectural
 - Have to change the interactions
- Radical
 - Opens new markets
 - Redefines new markets
 - Large org. can’t compete

Disruptive Technologies

- Two types of innovation
 - Incremental
 - Sustaining changes
 - Within a single “value network”
 - Continual improvements along a single performance
 - Disruptive
 - New technologies
 - Tend to incubate in other market segments
 - Change the performance criteria
Questions

• What are the major differences between the two approaches?
• Are they conflicting?
• Are they compatible?

Effects in architecture

• Companies are unable to adopt to new technologies because they can’t get them integrated into their existing architecture
• Channels
 – Who talks to who when
• Filter
 – What are the key issues, what information is important
• Strategies
 – How to solve problems
 – How to respond
Examples of architectural changes

- Photolithography
 - Contact
 - Proximity
 - Scanner
 - Stepper
- Determinate assembly
- Common architecture across aircraft lines
- Change in door frame

DFM problem

- The innovation can be including manufacturing issues in design
- Many companies solve the problem by putting manufacturing on the teams but
- Don't create new filters
- Don't create new strategies
- Keep doing the same work and have the same problems.
Four principles of Disruptive technologies

- Companies depend on current customers for resources
 - can’t go outside the current customer base because of the need to continually grow
- Small markets don’t solve the growth needs of large companies
- Markets that don’t exist can’t be analyzed
- Technology supply may exceed market demand

Sustaining technology with incremental improvement

- Performance improvement of one metric
- Rate of technology improvement exceeds the customer needs
- Inflexible in other performance metrics (size etc)
Disruptive technology

• Compete on new performance criteria
• Sacrifice performance on current market drivers
• Developed in small, entrepreneurial settings
 – Typically bootlegged in existing companies
 – Able to come up the learning curve
• Create a new market for the technology
• Existing companies put $ where the highest ROI is
• When faced with new technology, can’t come up the learning curve.

Examples

• Disk Drives
 – Continual increase in drive capacity
 – Smaller drives
 – Continual changes in the lead players
• Back Hoes
 – shift from cable driven to hydraulic
Steps in Disruptive technology

- Sustaining technology performs well and is being improved in response to customer demands
- Disruptive technology is developed but does not meet performance requirements
- Alternative markets are found/created where the performance/cost point fits new technology
- Disruptive technology matures to a state where the original markets can be entered and compete on a new performance criteria (i.e. size)

Innovator’s dilemma by C. Cristensen
Steel Technology

• Integrated mills
 – Produce from raw ore
 – Use blast furnaces - large optimal capacity (sizes the whole system)
 – High quality

• Mini-mills
 – Produce from scrap
 – Use electric arc furnaces - smaller optimal capacity
 – Low quality commodity parts

Two processes

O2, limestone, coke and iron ore

Blast furnace

Bessemer converters ->
open hearth -> basic O2 furnaces

ingots -> continuos casting

Cool

Store

Re heat

Rolled through 10-12 rollers

scrap metal

Electric arc

2" long strips

4-5 rollers
Steel production

- Cont. casting
- Huge capacity
- Higher costs
- Produce steel (limited by scale of blast furnace)
- Upgrade can be stages (easier)
- Higher quality
- CSP
- Limited capacity
- Lower costs
- Use scrap steel (use electric arc furnaces)
- Requires fundamental changes
- Quality?

Justification

- New technology implemented when new capacity added.
- Chances that new technology will be put in competitors site is minimal
- Their cost benefit was from other sources (labor, fuel, scrap metal)
- Looked at the technology and rejected it
- ??? They are being forced to upgrade their system to make it competitive.
Discussion questions

• Is the mini-mill a disruptive technology?
• Is the mini-mill an architectural change

• It seems obvious that they should implement it. Why can’t USS steel make the decision to do the investment.

• What would you do?

Lecture

• Why do incumbent firms fail
 – Architectural innovation
 – Disruptive Technology

• Assignment
 – You will be asked “why can’t company X do what you are doing” Need to justify the inability for incumbent firms to compete
 – What is your long term strategy
 • Start in incubator markets?
 • Create new markets?
Next lecture: Prototyping