14.170: Programming for Economists

1/12/2009-1/16/2009

Melissa Dell
Matt Notowidigdo
Paul Schrimpf
Lecture 3, Maximum Likelihood Estimation in Stata
Introduction to MLE

• Stata has a built-in language to write ML estimators. It uses this language to write many of its built-in commands
 – e.g. probit, tobit, logit, clogit, glm, xtpoisson, etc.

• I find the language very easy-to-use. For simple log-likelihood functions (especially those that are linear in the log-likelihood of each observation), implementation is trivial and the built-in maximization routines are good

• Why should you use Stata ML?
 – Stata will automatically calculate numerical gradients for you during each maximization step
 – Have access to Stata’s syntax for dealing with panel data sets (for panel MLE this can result in very easy-to-read code)
 – Can use as a first-pass to quickly evaluate whether numerical gradients/Hessians are going to work, or whether the likelihood surface is too difficult to maximize.

• Why shouldn’t you use Stata ML?
 – Maximization options are limited (standard Newton-Raphson and BHHH are included, but more recent algorithms not yet programmed)
 – Tools to guide search over difficult likelihood functions aren’t great
ML with linear model and normal errors

Log-likelihood for linear regression model (using normal distribution):

\[L = \prod_{i=1}^{N} \left(\frac{1}{\sigma} \phi \left(\frac{y_i - x_i \beta}{\sigma} \right) \right) \]

\[\log(L) = \sum_{i=1}^{N} \log \left(\frac{1}{\sigma} \phi \left(\frac{y_i - x_i \beta}{\sigma} \right) \right) \]

NOTE: This log-likelihood function satisfies the "linear form" restriction since the log-likelihood function is the sum of each observations log-likelihood function.
Basic Stata ML

program drop _all
program mynormal_lf
 args lnf mu sigma
 qui replace `lnf' = log((1/`sigma')*normalden(($ML_y1 - `mu')/`sigma'))
end

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + invnormal(uniform())
ml model lf mynormal_lf (y = x) ()
ml maximize
reg y x
```
ml maximize

initial:  log likelihood =  -<inf>  (could not be evaluated)
feasible: log likelihood =  -1087.6507
rescale:  log likelihood =  -277.86442
rescale eq: log likelihood =  -223.49417
Iteration 0:  log likelihood =  -223.49417  (not concave)
Iteration 1:  log likelihood =  -161.99355
Iteration 2:  log likelihood =  -145.92343
Iteration 3:  log likelihood =  -143.61901
Iteration 4:  log likelihood =  -143.61869
Iteration 5:  log likelihood =  -143.61869

Number of obs    =     100
Wald chi2(1)     =     391.34
Prob > chi2      =     0.0000

Log likelihood =  -143.61869

------------------------------------------------------------------------------
y |      Coef.     Std. Err.     z  P>|z|     [95% Conf. Interval]
-------------|---------------------------------------------------------------
eq1
       x |   1.995282    1.021763   19.53  0.000     1.79502   2.195544
_cons  |   .0799982     1.020926    0.78  0.434     -.1201996   .2799961
-------------

jeq2
_cons  |   1.017398    .0719409   14.14  0.000     .8763964    1.1584
-------------

, reg y x

Source |     SS    df    MS
-------------|------------------
Model | 394.721108     1  394.721108
Residual | 103.509873    98  1.05622319
-------------
Total | 498.23098    99  5.03263616

Number of obs =     100
F(  1,  98) = 373.71
Prob > F      =     0.0000
R-squared     =     0.7922
Adj R-squared =     0.7901
Root MSE      =     1.0277

------------------------------------------------------------------------------
y |      Coef.     Std. Err.     t  P>|t|     [95% Conf. Interval]
-------------|---------------------------------------------------------------
       x |   1.995282    1.032136   19.33  0.000     1.790458   2.200106
_cons  |   .0799982     1.031291    0.77  0.440     -.1247581   .2845546
-------------
```
ML with linear regression

program drop _all
program mynormal lf
 args lnf mu sigma
 qui replace `lnf' = log((1/`sigma')*normden(($ML_y1-`mu')/`sigma'))
end

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + x*x*invnormal(uniform())
gen keep = (uniform() > 0.1)
gen weight = uniform()
ml model lf mynormal lf (y = x) () [aw=weight] if keep == 1, robust
ml maximize
reg y x [aw=weight] if keep == 1, robust
. ml model lf mynormal lf `y = x' () [aw=weight] if keep == 1, robust

. ml maximize

initial:	log pseudolikelihood = -<inf> (could not be evaluated)
feasible:	log pseudolikelihood = -1202.2519
rescale:	log pseudolikelihood = -267.49701
rescale eq:	log pseudolikelihood = -208.45765
Iteration 0:	log pseudolikelihood = -208.45765 (not concave)
Iteration 1:	log pseudolikelihood = -159.93796
Iteration 2:	log pseudolikelihood = -153.65392
Iteration 3:	log pseudolikelihood = -152.52916
Iteration 4:	log pseudolikelihood = -152.52463
Iteration 5:	log pseudolikelihood = -152.52463

Number of obs = 88
Wald chi2(1) = 51.93
Prob > chi2 = 0.0000

Log pseudolikelihood = -152.52463

| y | Coef. | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|-------|------------------|---|------|------------------------|
| eq1 | x | 2.078282 | 2.883879 | 7.21 | 0.000 | 1.513052 2.643512 |
| _cons | -1.211747 | 1.594751 | -0.76 | 0.447 | -4.3374 1.913907 |
| eq2 | _cons | 1.369295 | 0.806752 | 3.60 | 0.000 | 0.6231852 2.115405 |

. reg y x [aw=weight] if keep == 1, robust
(sum of wgt is 4.62999e+01)

Regression with robust standard errors

| y | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---|-------|------------------|---|------|------------------------|
| x | 2.078282 | 2.900597 | 7.17 | 0.000 | 1.501662 2.654901 |
| _cons | -1.211747 | 1.603955 | -0.76 | 0.452 | -4.440534 1.97689 |
What’s going on in the background?

- We just wrote a 3 (or 5) line program. What does Stata do with it?
- When we call “ml maximize” it does the following steps:
 - Initializes the parameters (the “betas”) to all zeroes
 - As long as it has not declared convergence
 - Calculates the gradient at the current parameter value
 - Takes a step
 - Updates parameters
 - Test for convergence (based on either gradient, Hessian, or combination)
 - Displays the parameters as regression output (ereturn!)
How does it calculate gradient?

• Since we did not program a gradient, Stata will calculate gradients numerically. It will calculate a gradient by finding a numerical derivative.

• Review:
 – Analytic derivative is the following:

\[
 f'(x) = \lim_{{h \to 0}} \frac{f(x + h) - f(x)}{h}
\]

 – So that leads to a simple approximation formula for “suitably small but large enough h”; this is a numerical derivative of a function:

\[
 f'(x) \approx \frac{f(x + h) - f(x)}{h}
\]

 – Stata knows how to choose a good “h” and in general it gets it right

• Stata updates its parameter guess using the numerical derivatives as follows (i.e. it takes a “Newton” step):

\[
 \theta_{{t+1}} = \theta_t - \frac{f'(\theta_t)}{f''(\theta_t)}
\]
probit

Log-likelihood function for probit:

\[
\log(L) = \sum_{i=1}^{N} \log(L_i)
\]

\[
\log(L_i) = \log[(\Phi(X'\beta))^{y_i}(1 - \Phi(X'\beta))^{1-y_i}]
\]

\[
= y_i \times \log(\Phi(X'\beta)) + (1 - y_i) \times (1 - \Phi(X'\beta))
\]

\[
= y_i \times \log(\Phi(X'\beta)) + (1 - y_i) \times (\Phi(-X'\beta))
\]
program drop _all
program myprobit_lf
 args lnf xb
 qui replace `lnf' = ln(norm(`xb')) if $ML_y1 == 1
 qui replace `lnf' = ln(norm(-1*`xb')) if $ML_y1 == 0
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit_lf (y = x)
ml maximize
probit y x
program drop _all
program myprobit_lf
 args lnf xb
 qui replace `lnf' = ///
 $ML_y1*ln(norm(`xb')) + (1-$ML_y1)*(1 - ln(norm(`xb')))
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit_lf (y = x)
ml maximize
probit y x
. probit y x

Iteration 0: log likelihood = -612.54939
Iteration 1: log likelihood = -542.22446
Iteration 2: log likelihood = -541.15783
Iteration 3: log likelihood = -541.15684

Probit estimates

Number of obs = 1000
LR chi2(1) = 142.79
Prob > chi2 = 0.0000
Pseudo R2 = 0.1165

Log likelihood = -541.15684

| y | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----|--------|-----------|------|------|----------------------|
| x | .5367247 | .0475177 | 11.30 | 0.000 | .4435818 -.6298576 |
| _cons | .5750247 | .0447145 | 12.86 | 0.000 | .4873959 .6626636 |

. ml model lf myprobit lf (y = x)

. ml maximize

initial; log likelihood = -693.14718
alternative: log likelihood = -612.64995
rescale: log likelihood = -612.64995
Iteration 0: log likelihood = -612.64995
Iteration 1: log likelihood = -541.46569
Iteration 2: log likelihood = -541.15686
Iteration 3: log likelihood = -541.15684

Number of obs = 1000
Wald chi2(1) = 127.58
Prob > chi2 = 0.0000

Log likelihood = -541.15684

| y | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----|--------|-----------|------|------|----------------------|
| x | .5367247 | .0475177 | 11.30 | 0.000 | .4435817 -.6298576 |
| _cons | .5750247 | .0447146 | 12.86 | 0.000 | .4873958 .6626636 |
What happens here?

program drop _all
program myprobit_lf
 args lnf xb
 qui replace `lnf' = ln(norm(`xb')) if $ML_y1 == 1
 qui replace `lnf' = ln(norm(-1*`xb')) if $ML_y1 == 0
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model lf myprobit_lf (y = x)
ml maximize
probit y x
Difficult likelihood functions?

```
. ml model lf myprobit_lf (y = x) ()
. ml maximize

initial:   log likelihood = -693.14718
alternative:   log likelihood = -612.64995
rescale:   log likelihood = -612.64995
rescale eq:   log likelihood = -612.64995
could not calculate numerical derivatives
flat or discontinuous region encountered
r(430);
```

- Stata will give up if it can’t calculate numerical derivatives. This can be a big pain, especially if it’s a long-running process and happens after a long time. If this is not a bug in your code (like last slide), a lot of errors like this is a sign to leave Stata so that you can get better control of the maximization process.

- A key skill is figuring whether the error above is “bug” in your program or if it is a difficult likelihood function to maximize.
program drop _all
program mynormal_lf
 args lnf mu ln sigma
 tempvar sigma
 gen double `sigma' = exp(`ln_sigma')
 qui replace `lnf' = log((1/`sigma')*normden((`ML_y1-`mu')/`sigma'))
end

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen y = 2*x + 0.01*invnormal(uniform())
ml model lf mynormal_lf (y = x) /log_sigma
ml maximize
reg y x

\[\sigma \in (0, \infty) \Rightarrow \log(\sigma) \in (-\infty, \infty) \]

\[\rho \in (-1, 1) \Rightarrow \frac{1}{2} \log\left(\frac{1 + x}{1 - x}\right) \in (-\infty, \infty) \]
From “lf” to “d0”, “d1”, and “d2”

- In some (rare) cases you will want to code the gradient (and possibly) the Hessian by hand. If there are simple analytic formulas for these and/or you need more speed and/or the numerical derivatives are not working out very well, this can be a good thing to do.

- Every ML estimator we have written so far has been of type “lf”. In order to calculate analytic gradients, we need to use a “d1” or a “d2” ML estimator.

- But before we can implement the analytic formulas for the gradient and Hessian in CODE, we need to derive the analytic formulas themselves.
gradient and Hessian for probit

Gradient and Hessian functions for probit:

\[
\log(L_i) = y_i \log(\Phi(X'\beta)) + (1 - y_i) \log(\Phi(-X'\beta))
\]

\[
g_j = \frac{\partial \log(L_j)}{\partial (X'\beta)} = y_i \frac{\phi(X'\beta)}{\Phi(X'\beta)} - (1 - y_i) \frac{\phi(X'\beta)}{\Phi(-X'\beta)}
\]

\[
H_j = \frac{\partial^2 \log(L_j)}{\partial (X'\beta)^2} = \frac{\phi(X'\beta)(X'\beta) \Phi(X'\beta) - \phi(X'\beta) \Phi(-X'\beta)}{[\Phi(X'\beta)]^2}
\]

\[
= -g_j \cdot (g_j + X'\beta)
\]

note we will usually program the NEGATIVE Hessian
More probit (d0)

program drop _all
program myprobit_d0
 args todo b lnf
 tempvar xb l_j
 mleval `xb' = `b'
 qui {
 gen `l_j' = normalden(`xb') if $ML_y1 == 1
 replace `l_j' = normalden(-1 * `xb') if $ML_y1 == 0
 mlsum `lnf' = ln(`l_j')
 }
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d0 myprobit_d0 (y = x)
ml maximize
probit y x
. `m`l model d0 myprobit_d0 (y = x)

. `m`l maximize

<table>
<thead>
<tr>
<th>Iteration</th>
<th>log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-612.64996</td>
</tr>
<tr>
<td>1</td>
<td>-541.1635</td>
</tr>
<tr>
<td>2</td>
<td>-541.15684</td>
</tr>
<tr>
<td>3</td>
<td>-541.15684</td>
</tr>
<tr>
<td>4</td>
<td>-541.15684</td>
</tr>
<tr>
<td>5</td>
<td>-541.15684</td>
</tr>
<tr>
<td>6</td>
<td>-541.15684</td>
</tr>
<tr>
<td>7</td>
<td>-541.15684</td>
</tr>
<tr>
<td>8</td>
<td>-541.15684</td>
</tr>
<tr>
<td>9</td>
<td>-541.15684</td>
</tr>
<tr>
<td>10</td>
<td>-541.15684</td>
</tr>
<tr>
<td>11</td>
<td>-541.15684</td>
</tr>
<tr>
<td>12</td>
<td>-541.15684</td>
</tr>
</tbody>
</table>

Number of obs = 1000
Log likelihood = -541.15684
Wald chi2(1) = 131.65
Prob > chi2 = 0.0000

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|--------|-----------|-----|-----|----------------------|
| | | | | | |
|x | 0.5367257 | 0.046778 | 11.47 | 0.000 | 0.4450425 - 0.628409 |
|_cons | 0.5750386 | 0.0427927 | 13.44 | 0.000 | 0.4911664 - 0.6589108 |

. `probit y x`

Iteration 0: log likelihood = -612.54939
Iteration 1: log likelihood = -542.22446
Iteration 2: log likelihood = -541.15783
Iteration 3: log likelihood = -541.15684

Probit estimates
Number of obs = 1000
LR chi2(1) = 142.79
Prob > chi2 = 0.0000
Log likelihood = -541.15684
Pseudo R2 = 0.1165

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|--------|-----------|-----|-----|----------------------|
| | | | | | |
|x | 0.5367247 | 0.0475177 | 11.30 | 0.000 | 0.4435918 - 0.6298576 |
|_cons | 0.5750247 | 0.0447145 | 12.86 | 0.000 | 0.4873859 - 0.6626636 |
More probit (d0)

program drop _all
program myprobit_d0
 args todo b lnf
 tempvar xb l_j
 mleval `xb' = `b'
 qui {
 gen double `l_j' = norm(`xb') if $ML_y1 == 1
 replace `l_j' = norm(-1 * `xb') if $ML_y1 == 0
 mlsum `lnf' = ln(`l_j')
 }
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d0 myprobit_d0 (y = x)
ml maximize
probit y x
Still more probit (d1)

program drop _all
program myprobit_d1
 args todo b lnf g
 tempvar xb l_j g1
 mleval `xb' = `b'
 qui {
 gen double `l_j' = norm(`xb') if $ML_y1 == 1
 replace `l_j' = norm(-1 * `xb') if $ML_y1 == 0
 mlsum `lnf' = ln(`l_j')

 gen double `g1' = normden(`xb')/`l_j' if $ML_y1 == 1
 replace `g1' = -normden(`xb')/`l_j' if $ML_y1 == 0
 mlvecsum `lnf' `g' = `g1', eq(1)
 }
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d1 myprobit_d1 (y = x)
ml maximize
probit y x
```
. ml model d1 myprobit_d1 (y = x)
. ml maximize

  initial:  log likelihood =  -693.14718
  alternative: log likelihood =  -612.64995
  rescale:  log likelihood =  -612.64995
  Iteration 0:  log likelihood =  -612.64995
  Iteration 1:  log likelihood =  -541.46581
  Iteration 2:  log likelihood =  -541.15686
  Iteration 3:  log likelihood =  -541.15684

  Number of obs   =    1000
  Wald chi2(1)    =   127.58
  Prob > chi2     =     0.0000

Log likelihood =  -541.15684

------------------------------------------------------------------------------
      y |      Coef.   Std. Err.      z    P>>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      x |  .5367246   .0475177    11.30   0.000     .4435917    .6298576
    _cons |  .5750247   .0447145    12.86   0.000     .4873858    .6626636
------------------------------------------------------------------------------

. probit y x

  Iteration 0:  log likelihood =  -612.54939
  Iteration 1:  log likelihood =  -542.22446
  Iteration 2:  log likelihood =  -541.15783
  Iteration 3:  log likelihood =  -541.15684

  Number of obs   =    1000
  LR chi2(1)      =   142.79
  Prob > chi2     =     0.0000

Log likelihood =  -541.15684

------------------------------------------------------------------------------
      y |      Coef.   Std. Err.      z    P>>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      x |  .5367247   .0475177    11.30   0.000     .4435918    .6298576
    _cons |  .5750247   .0447145    12.86   0.000     .4873859    .6626636
------------------------------------------------------------------------------
```
program drop _all
program myprobit_d2
 args todo b lnf g negH
 tempvar xb l_j g1
 mleval `xb' = `b'
 qui {
 gen double `l_j' = norm(`xb') if $ML_y1 == 1
 replace `l_j' = norm(-1 * `xb') if $ML_y1 == 0
 mllsum `lnf' = ln(`l_j')
 gen double `g1' = normden(`xb')/`l_j' if $ML_y1 == 1
 replace `g1' = -normden(`xb')/`l_j' if $ML_y1 == 0
 mlvecsum `lnf' `g' = `g1', eq(1)
 mlmatsum `lnf' `negH' = `g1'*(`g1'+`xb'), eq(1,1)
 }
end

clear
set obs 1000
set seed 12345
gen x = invnormal(uniform())
gen y = (0.5 + 0.5*x > invnormal(uniform()))
ml model d2 myprobit_d2 (y = x)
ml search
ml maximize
probit y x
. ml model d2 myprobit_d2 (y = x)

. ml search
 initial: log likelihood = -693.14718
 improve: log likelihood = -693.14718
 alternative: log likelihood = -612.64995
 rescale: log likelihood = -612.64995

. ml maximize
 initial: log likelihood = -612.64995
 rescale: log likelihood = -612.64995
 Iteration 0: log likelihood = -612.64995
 Iteration 1: log likelihood = -541.46681
 Iteration 2: log likelihood = -541.15686
 Iteration 3: log likelihood = -541.15684

 Number of obs = 1000
 Wald chi2(1) = 127.58
 Prob > chi2 = 0.0000

 Log likelihood = -541.15684

 --
 y Coef. Std. Err. z P>|z| [95% Conf. Interval]
 [-------------[-------------[-------------[-------------[-------------
 x .5367246 .0475177 11.30 0.000 .4435917 .6298576
 _cons .5750247 .0447146 12.86 0.000 .4873858 .6626636
 --

. probit y x

 Iteration 0: log likelihood = -612.54939
 Iteration 1: log likelihood = -542.22446
 Iteration 2: log likelihood = -541.15763
 Iteration 3: log likelihood = -541.15684

 Probit estimates
 Number of obs = 1000
 LR chi2(1) = 142.79
 Prob > chi2 = 0.0000
 Pseudo R2 = 0.1165

 Log likelihood = -541.15684

 --
 y Coef. Std. Err. z P>|z| [95% Conf. Interval]
 [-------------[-------------[-------------[-------------[-------------
 x .5367247 .0475177 11.30 0.000 .4435918 .6298576
 _cons .5750247 .0447145 12.86 0.000 .4873859 .6626636
 --
Beyond linear-form likelihood fn’s

• Many ML estimators I write down do NOT satisfy the linear-form restriction, but OFTEN they have a simple panel structure (e.g. think of any “xt*” command in Stata that is implemented in ML)

• Stata has nice intuitive commands to deal with panels (e.g. “by” command!) that work inside ML programs

• As an example, let’s develop a random-effects estimator in Stata ML. This likelihood function does NOT satisfy the linear-form restriction (i.e. the overall log-likelihood function is NOT just the sum of the individual log-likelihood functions)

• This has two purposes:
 – More practice going from MATH to CODE
 – Good example of a panel data ML estimator implementation
Panel model with random effects:

\[y_{it} = x_{it} \beta + u_i + \epsilon_{it} \]
\[u_i \sim N(0, \sigma_u^2) \]
\[\epsilon_{it} \sim N(0, \sigma_e^2) \]

Log-likelihood function is given by the following:

\[
\log(L) = \sum_{i=1}^{N} \log(L_i)
\]

where \(i \) indexes the group, not the observation. The log-likelihood function for the group is the following:

\[
\log(L_i) = \log \left(\int_{-\infty}^{\infty} f(u_i) \prod_{t=1}^{T} f(y_{it} | u_i) du_i \right)
= \log \left(\int_{-\infty}^{\infty} \frac{1}{\sigma_u \sqrt{2\pi}} \exp \left(-\frac{u_i^2}{2\sigma_u^2} \right) \prod_{t=1}^{T} \left(\frac{1}{\sigma_\epsilon \sqrt{2\pi}} \exp \left\{ -\frac{(y_{it} - u_i - x_{it} \beta)^2}{2\sigma_\epsilon^2} \right\} \right) du_i \right)
= -\frac{1}{2} \left\{ \sum_{t=1}^{T} \frac{z_{it}^2 - a_i \left(\sum_{t=1}^{T} z_{it} \right)^2}{\sigma_\epsilon^2} + \log(T \cdot \sigma_u^2 / \sigma_\epsilon^2 + 1) + T \cdot \log(2\pi \sigma_\epsilon^2) \right\}
\]

where \(T \) is the number of observations for each group, \(z_{it} = y_{it} - x_{it} \beta \) and \(a_i = \sigma_u^2 / (T \cdot \sigma_u^2 + \sigma_\epsilon^2) \)
Random effects in ML

program drop _all
program define myrereg_d0
args todo b lnf

tempvar xb z T S_z2 Sz_2 S_temp a first
tempname sigma_u sigma_e ln_sigma_u ln_sigma_e
mleval `xb' = `b', eq(1)
mleval `ln_sigma_u' = `b', eq(2) scalar
mleval `ln_sigma_e' = `b', eq(3) scalar
scalar `sigma_u' = exp(`ln_sigma_u')
scalar `sigma_e' = exp(`ln_sigma_e')

** hack!
sort $panel
qui {
 gen double `z' = $ML_y1 - `xb'
 by $panel: gen `T' = _N
 gen double `a' = (`sigma_u'^2) / (`T'*(`sigma_u'^2) + `sigma_e'^2)
 by $panel: egen double `S_z2' = sum(`z'^2)
 by $panel: egen double `S_temp' = sum(`z')
 by $panel: gen double `Sz_2' = `S_temp'^2
 by $panel: gen `first' = (_n == 1)
 mlsum `lnf' = -.5 * ///
 ((`S_z2' - `a'*`Sz_2')/(`sigma_e'^2) + ///
 log(`T'*`sigma_u'^2/`sigma_e'^2 + 1) + ///
 `T'*log(2*_pi* `sigma_e'^2) ///
) if `first' == 1
}
end
Random effects in ML

```
gen double `z' = $ML_y1 - `xb'
by $panel: gen `T' = _N
gen double `a' = (`sigma_u'^2) / (`T'*(`sigma_u'^2) + `sigma_e'^2)
by $panel: egen double `S_z2' = sum(`z'^2)
by $panel: egen double `S_temp' = sum(`z')
by $panel: gen double `Sz_2' = `S_temp'^2
by $panel: gen `first' = (_n == 1)
mlsum `lnf' = -.5 *
    ( (`S_z2' - `a'*`Sz_2')/(`sigma_e'^2) +
      log(`T'*`sigma_u'^2/`sigma_e'^2 + 1) +
      `T'*log(2* _pi * `sigma_e'^2)
    ) if `first' == 1
```
Random effects in ML

where T is the number of observations for each group, $z_{it} = y_{it} - x_{it} \beta$ and
$$a_i = \sigma_u^2/(T * \sigma_u^2 + \sigma_e^2)$$

gen double `z' = ML_y1 - `xb'
by $panel: gen `T' = _N
gen double `a' = (`sigma_u'^2) / (`T'*(`sigma_u'^2) + `sigma_e'^2)
Random effects in ML

\[\sum_{t=1}^{T} z_{it}^2 - \alpha_i \left(\sum_{t=1}^{T} z_{it} \right)^2 \]

by panel: egen double `S_z2' = sum(`z'^2)
by panel: egen double `S_temp' = sum(`z')
by panel: gen double `Sz_2' = `S_temp'^2
Random effects in ML

\[-\frac{1}{2} \left\{ \frac{\sum_{t=1}^{T} z_{it}^2 - a_i \left(\sum_{t=1}^{T} z_{it} \right)^2}{\sigma_e^2} + \log(T \cdot \sigma_u^2 / \sigma_e^2 + 1) + T \cdot \log(2\pi \sigma_e^2) \right\} \]

by $\text{panel: gen `first' = (_n == 1)}$
mlsum `lnf' = -.5 *

\[
\begin{align*}
&\left((\text{`S_z2'} - \text{`a'*`Sz_2'})/(\text{`sigma_e'^2}) \right) + \\
&\log(\text{`T'*`sigma_u'^2/`sigma_e'^2 + 1}) + \\
&\text{`T'*log(2* _pi * `sigma_e'^2)} \\
\end{align*}
\]

} if `first' == 1
Random effects in ML

program drop _all
program define myrereg_d0
args todo b lnf
 tempvar xb z T S_z2 Sz_2 S_temp a first
 tempname sigma_u sigma_e ln_sigma_u ln_sigma_e
 mleval `xb' = `b', eq(1)
 mleval `ln_sigma_u' = `b', eq(2) scalar
 mleval `ln_sigma_e' = `b', eq(3) scalar
 scalar `sigma_u' = exp(`ln_sigma_u')
 scalar `sigma_e' = exp(`ln_sigma_e')

** hack!
 sort $panel
Random effects in ML

clear
set obs 100
set seed 12345
gen x = invnormal(uniform())
gen id = 1 + floor((_n - 1)/10)
bys id: gen fe = invnormal(uniform())
bys id: replace fe = fe[1]
gen y = x + fe + invnormal(uniform())
global panel = "id"
ml model d0 myrereg_d0 (y = x) /ln_sigma_u /ln_sigma_e
ml search
ml maximize
xtnreg y x, i(id) re
"my" MLE RE vs. XTREG, MLE

\texttt{\textbackslash . nll model dU myreg_dU (y = x) /ln_sigma_u /ln_sigma_e}

\texttt{\textbackslash . nll search}

\texttt{\textbackslash . nll maximize}

\texttt{\textbackslash . xtreg y x, \textbackslash . nll mle}

Fitting constant-only model:

\begin{itemize}
 \item Iteration 0: log likelihood = -207.73466
 \item Iteration 1: log likelihood = -207.73466
 \item Iteration 2: log likelihood = -207.73466
 \item Iteration 3: log likelihood = -207.73466
 \item Iteration 4: log likelihood = -207.73466
 \item Iteration 5: log likelihood = -207.73466
\end{itemize}

Log likelihood = -149.93725

Fitting full model:

\begin{itemize}
 \item Iteration 0: log likelihood = -150.01533
 \item Iteration 1: log likelihood = -149.93725
 \item Iteration 2: log likelihood = -149.93725
\end{itemize}

Random-effects ML regression

Number of obs = 100
Number of groups = 10
Obs per group: min = 10
avg = 10.0
max = 10

LR chi2(1) = 74.52
Prob > chi2 = 0.0000

\begin{tabular}{lcccccc}
 y & Coef. & Std. Err. & z & P>|z| & [95\% Conf. Interval] \\
 \hline
 const & -1.316932 & 0.153917 & 8.57 & 0.000 & -1.618065 & -0.915799 \\
 eq1 & 0.999021 & 0.101934 & 9.78 & 0.000 & 0.794350 & 1.203693 \\
 ln_sigma_u & 0.261590 & 0.249280 & 1.03 & 0.300 & -0.079098 & 0.562377 \\
 ln_sigma_e & -0.102035 & 0.074592 & -1.38 & 0.168 & -0.245201 & 0.041131 \\
\end{tabular}

\textit{Point estimates identical but standard errors different; why?}
Exercises

(A) Implement logit as a simple (i.e. “lf”) ML estimator using Stata’s ML language
(If you have extra time, implement as a d2 estimator, calculating the gradient and Hessian analytically)

(B) Implement conditional logit maximum likelihood (MLE) estimator using Stata’s ML language
(NOTE: This is HARD; see hints on-line)
conditional logit

log-likelihood for conditional logit:

$$\log(L_i) = \sum_{t=1}^{T} y_{it} x_{it} \beta - \log \left(\sum_{d_i \in S_i} \exp \left(\sum_{t=1}^{T} d_{it} x_{it} \beta \right) \right)$$

where d_{it} is equal to 0 or 1 such that sum of all d_{it} in the panel equal the sum of all y_{it} in the panel, and S_i is defined to be all combinations of sequences of d_{it} such that sum of all d_{it} in the panel equal the sum of all y_{it} in the panel