Week 7 Problem Set Solutions

Problem 1: Limiting Values of R

In this problem we will use the extreme Kerr metric (3) and note that the dr^2 term in the metric should blow up at the horizon. Therefore, $r_H = M$ and using equation (4), we get:

$$R^2_H = M^2 + M^2 + \frac{2M^3}{M} = 4M^2$$

so $R_H = 2M$

Now find the values of r for which R differs from r by one part in a million:

$$\frac{R - r}{r} = 10^{-6} = \sqrt{r^2 + M^2 + \frac{2M^3}{r} - r} = \sqrt{1 + \frac{M^2}{r^2} + \frac{2M^3}{r^3} - 1} \approx 1 + \frac{M^2}{2r^2} - 1 = \frac{M^2}{2r^2}$$

where we expanded the square root using the fact that in order to satisfy this condition we must have $r >> r_H = M$. The condition is satisfied for $r > 707M$.

Problem 2: Deriving Energy-at-Infinity and Angular Momentum

The Kerr metric in the equatorial plane is:

$$d\tau^2 = \left(1 - \frac{2M}{r}\right)dt^2 + \frac{4Ma}{r}dtd\phi - \left(1 - \frac{2M}{r} + \frac{a^2}{r^2}\right)^{-1}dr^2 - \left(1 + \frac{a^2}{r^2} + \frac{2Ma^2}{r^3}\right)r^2d\phi^2$$

The integrand of the proper time is:

$$f = \left[\left(\frac{d\tau}{d\lambda}\right)^2\right]^{1/2}$$

We note immediately that the integrand does not depend explicitly on two of the variables, i.e.:

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial \phi} = 0$$
Therefore, we can determine two constants of motion. To find them, let’s get the other side of the Euler-Lagrange equation:

\[
\frac{f}{\partial (dt/d\lambda)} = \frac{1}{f} \left(\left(1 - \frac{2M}{r} \right) \frac{dt}{d\lambda} + \frac{2Ma}{r} \frac{d\phi}{d\lambda} \right) = C_1
\]

\[
\frac{f}{\partial (d\phi/d\lambda)} = \frac{1}{f} \left(1 + \frac{a^2}{r^2} + \frac{2Ma^2}{r^3} \right) r^2 \frac{d\phi}{d\lambda} + \frac{1}{f} \frac{2Ma}{r} \frac{dt}{d\lambda} = -C_2
\]

Now we can substitute \(\lambda \to \tau \) (which sets \(f \to 1 \)) and rename the constants of motion.

\[
\frac{E_{Kerr}}{m} = \left(1 - \frac{2M}{r} \right) \frac{dt}{d\tau} + \frac{2Ma}{r} \frac{d\phi}{d\tau}
\]

\[
\frac{L_{Kerr}}{m} = \left(1 + \frac{a^2}{r^2} + \frac{2Ma^2}{r^3} \right) r^2 \frac{d\phi}{d\tau} - \frac{2Ma}{r} \frac{dt}{d\tau}
\]

These quantities are conserved along any path determined by the principle of extremal aging (any geodesic path). If we set \(a = 0 \), we see that the constants of motion reduce to the familiar expressions of the non-rotating case.

Problem 3: Bookkeeper Speed in the “Final Circle”

Multiply equation (22) by \(R \) on both sides and substitute the values at the horizon \(r_H = M \) and \(R_H = 2M \). The result is:

\[
R_H \frac{d\phi}{dt} = \frac{2M^2}{M \cdot 2M} = 1
\]

Hence, the stone moves in the direction of rotation with the \(Rd\phi/dt = 1 \). One might say that the bookkeeper speed is the speed of light. However, one should bear in mind that \(Rd\phi/dt \), like any bookkeeper speed, is not a physical speed at all. It’s a coordinate speed.

Problem 4: Ring Speed According to the Bookkeeper

The units of \(\omega \) in equation (22) are in meters\(^{-1} \). This makes sense since the increment of the angle \(d\phi \) has no units and the increments of time \(dt \) has units of meter.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(R\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100M</td>
<td>0.00020</td>
</tr>
<tr>
<td>10M</td>
<td>0.0199</td>
</tr>
<tr>
<td>2M</td>
<td>0.408</td>
</tr>
<tr>
<td>(M)</td>
<td>1</td>
</tr>
</tbody>
</table>
Problem 5: Available Energy from the Monster Black Hole in Our Galaxy

For an extreme Kerr black hole $a = M$, so equation (40) becomes $M_{irr}^2 = M^2/2$ or $M_{irr} = M/\sqrt{2}$. The fraction of the mass that can be, in principle, extracted as energy is thus:

$$\frac{\Delta M}{M} = 1 - \frac{1}{\sqrt{2}} \approx 0.293$$

So the available energy is $E \approx 0.293 \times 2.6 \times 10^6 M_\odot \approx 7.6 \times 10^5 M_\odot$. That is a great deal of energy.

Problem 6: Energies of a Particle

a) Use equation (44) with values $r = 1.5M$, $R = 2.141M$:

$$\frac{E}{m} = \frac{r - M}{R} \approx \frac{0.5M}{2.141M} = 0.234$$

So the energy-at-infinity required is $(k + 0.234)m$.

b) At the static limit, $r = 2M$ and $R = \sqrt{6}M \approx 2.449M$.

$$\frac{E}{m} = \frac{r - M}{R} \approx \frac{M}{2.449M} \approx 0.408$$

So the energy-at-infinity that must be added to the original particle is $(k + 0.408)m$.

c) For a particle at rest at $r = 4M$, use equation (19) with $d\phi/dt = 0$.

$$\frac{E}{m} = \left(1 - \frac{2M}{r}\right) \frac{dt}{d\tau} = \left(1 - \frac{2M}{r}\right)^{1/2} = \frac{1}{\sqrt{2}} \approx 0.707$$

So we would have to add an energy-at-infinity of $(k + 0.707)m$.

d) At rest at infinity, the particle will have energy $E = m$, so we have to add an energy-at-infinity of $(k + 1)m$ to remove it to infinity.

Problem 7: Energy Extracted in Phase 1

For $r = 1.5M$ and $R = 2.141M$, equation (44) gives:

$$\frac{E}{2M} = \frac{r - M}{R} \approx \frac{0.5M}{2.141M} \approx 0.234$$

so the energy $E_{\text{phase 1}} = 2m - 2m \times 0.234 = 1.532m$ has been milked off.
Problem 8: Energy Extracted in Phase 2

a)-b) The ring observer combines matter with anti-matter of total rest mass $2m$ and produces two opposite light flashes each of energy m.

c) Using equation (45) for $v_{\text{ring}} = 1$ gives the energy measured far away of the forward moving light flash with $E_{\text{ring}} = m$:

$$\frac{E_{\text{phase}2}}{m} = \frac{r - M}{R} + \frac{2M^2}{rR} \approx \frac{0.5M}{2.141M} + \frac{2M^2}{1.5 \times 2.141M} \approx 0.856$$

The backward moving light flash has energy-at-infinity:

$$\frac{E}{m} = \frac{r - M}{R} + \frac{2M^2}{rR} \approx \frac{0.5M}{2.141M} - \frac{2M^2}{1.5 \times 2.141M} \approx -0.388$$

Problem 9: Total Energy Extracted

a) The total useful energy made available to the distant engineers as a result of this entire procedure is given by:

$$E_{\text{phase1}} + E_{\text{phase2}} = 1.532m + 0.856m = 2.388m$$

b) Energy taken away from the black hole during Phase 2 is the negative of the backward moving light flash that gets absorbed, $0.388m$. That is where the far-away engineers get the extra energy after starting with only $2m$.