Abstraction Mechanisms across the Board: A Short Introduction.

Eric Feron
Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology.

Outline

■ Introduction

■ xxxxxxxx-xxxxxxx

■ xxxxxxxxx-xxx xxxxxxxxxx xxxxxx xxxxxxxxx xx-xxxxxx

■ xxxxxxxxx-xxx xxxxxxxxxx xxxxxx xxxxxxxxxx xxxxxxxxxx

■ xxxxxxxxx-xxx xxxxxxxxxx xxxxxx xxxxxxxxxx xxx

■ xxxxxxxxx-xxx xxxxxxxxxx xxxxxx xxxxxxxxxx xxxxxxxxxx

■ Conclusions
Computer Programs as Dynamical Systems

- A computer program can be viewed as a rule for iterative modification of the operating memory.

- In more specifics, computer program models defined by the dynamical system \(S = S(X, f, X_0, X_\infty) \) are considered.

- \(X \) is the state space, \(X_0 \subset X \), and \(X_\infty \subset X \) are sets of initial and terminal states and the set-valued function \(f : X \rightarrow 2^X \) is such that \(f(x) \subset X_\infty \) for all \(x \in X_\infty \).

- To each dynamical system \(S = S(X, f, X_0, X_\infty) \) corresponds the set of all sequences \(x = (x(0), x(1), ..., x(t), ...) \) of elements of \(X \), satisfying \(x_0 \in X_0, x(t+1) \in f(x(t)), \forall t \in \mathbb{Z}^+ \).
Software Analysis

- Verification of essential properties of $S=S(X, f, X_0, X_\infty)$.

- Finite-time termination: $\forall x(0) \in X_0$, $\exists T > 0$, s.t. $x(t) \in X_\infty$, $\forall t \geq T$.

- Absence of overflow: $\forall x(0) \in X_0$, $\forall t \geq 0$, $x(t) \in X \subset X$.
Abstracted Model

- An Abstracted model of a computer program is a simplified but not perfectly accurate model of the original program.

- The model \(S(\overline{X}, \hat{f}, \overline{X}_0, \overline{X}_\infty) \) is an abstraction of \(S(X, f, X_0, X_\infty) \) if \(X \subset \overline{X}, \overline{X}_\infty \subset X_\infty, X_0 \subset \overline{X}_0, f(x) \subset \hat{f}(x), \forall x \in X \).

- Validity of certain properties such as finite-time termination and boundedness in the abstracted model \(S(\overline{X}, \hat{f}, \overline{X}_0, \overline{X}_\infty) \) imply their validity in the original model \(S(X, f, X_0, X_\infty) \).
An Example:

\(T(1,\ldots,n) \); array of reals
\(I \in [I_{\text{min}}, I_{\text{max}}] \); uncertain integer input
\(l = l_0 \); Integer within \(\{1,\ldots,n\} \) sets the initial condition

\[
\text{for } k = 1 : K \\
x = |a| \cdot T(l) + b; \\
l = [c \cdot x + d \cdot l + e \cdot I]; \\
\]

Assume that \(M \) is the overflow limit. Let \(T_{\text{max}} := \max_{1 \leq i \leq n} T(i) \)
and \(T_{\text{min}} := \min_{1 \leq i \leq n} T(i) \). If \([|a| \cdot T_{\text{min}} + b, |a| \cdot T_{\text{max}} + b] \subset [-M, M]\),
then the variable \(x \) is guaranteed to remain bounded, provided
that the index \(l \), remains within the feasible set \(\{1,\ldots,n\} \).
An Abstracted model of the above program is then give by

\[T_{\text{min}}, T_{\text{max}}: \text{real variable} \]

\[I \in [I_{\text{min}}, I_{\text{max}}]; \text{uncertain real input} \]

\[x \in [|a| \cdot T_{\text{min}} + b, |a| \cdot T_{\text{max}} + b] \subset [-M, M]; \text{uncertain real input} \]

\[l \in [1, n]; \text{uncertain real initial condition/input} \]

\[\text{for } k = 1 : K \]

\[l = c.x + d.l + e.I; \]

\[\text{end} \]

Verify that subject to the above transformation, \(l \), remains within the interval \([1, n + 1)\).

At an abstract level, a universal language is sufficient. For practical considerations such as availability of an efficient relaxation technique and compatibility with an optimization engine, specific modeling techniques come a necessity.
Models of Computer Programs

- Linear systems with conditional switching:

 \[X = \{0, 1, 2, \ldots, m\} \times \mathbb{R}^n, \quad X_0 = \{0\} \times \mathbb{R}^n, \quad X_\infty = \{m\} \times \mathbb{R}^n. \]

 \[f : X \mapsto 2^X \text{ is defined by matrices } A_k, B_k, L_k, F_k, G_k, H_k, C_k, D_k, \]

 where \(k \in \{0, 1, \ldots, m-1\} \), as well as by a function \(p : \{0, \ldots, m-1\} \mapsto \{0, \ldots, m\} \), according to the following rule:

 \[f(k, v) = \{(k + 1, A_kv + Bkw + L_k) : w \in [-1, 1]\} \]

 when \(C_kv + D_k \leq 0 \) and \(k < m \),

 \[f(k, v) = \{(p(k), F_kx + G_kw + H_k) : w \in [-1, 1]\} \]

 when \(C_kv + D_k > 0 \) and \(k < m \), and \(f(k, v) = \{m, v\} \) when \(k = m \).
Mixed integer/linear systems:

\(X = \mathbb{R}^n \) is the state space. The state transition map \(f : X \rightarrow 2^X \) is defined by two matrices \(F, H \) of appropriate dimensions, according to

\[
f(x) = \{ F[x; w; v; 1] : H[x; w; v; 1] = 0, \ w \in [-1, 1]^q, \ v \in \{-1, 1\}^r \}\.
\]

Every piecewise linear map on \(X \) can be written in this format.

Trigonometric polynomial models:

The state space \(X \) is a direct product of sets of the form \(\mathbb{T}^k \) or \(\mathbb{Z}_q^k \), where \(\mathbb{Z}_q \) denotes the set of all complex numbers \(z \) such that \(z^q = 1 \). The state transition map \(f : X \rightarrow 2^X \) is defined by a vector polynomial \(p \) of \(2n+k \) complex variables, according to

\[
f(x) = \{ y \in X : p(y, x, z) = 0 \text{ for some } z \in \mathbb{T}^k \}.
\]
Consider a computer program modeled as a mixed integer/linear system. If there exists a constant $\theta > 1$ and a function $V(.) : \mathbb{R}^n \rightarrow \mathbb{R}$, which satisfies

1) $V(x(0)) < 0$,
2) $V(x(k + 1)) < \theta V(x(k))$,
3) $V(x(k)) > \left\| \frac{x(k)}{M} \right\| - 1$

along any trajectory of the system, then the program will not overflow and will terminate in finite time.

Appropriate system invariants for the two other suggested models of computer programs have a similar structure.

Assuming a quadratic or linear form for the function $V(.)$, the search for a system invariant, reduces to solving a finite number of LMIs or an LP respectively.
Systematic Improvement of Analysis

- Increasing the depth (memory) of the model:
 \[x(k + 2) = FX(k), \text{ s.t. } HX(k) = 0, \ k = 1, 2, \ldots \]

- Then, search for a function \(V(.) : \mathbb{R}^n \rightarrow \mathbb{R} \), which satisfies
 \[
 V(x(0)) < 0, \quad V(x(1)) < 0, \quad V(x(k + 2)) < \theta V(x(k)) \quad V(x(k - 2)) > \left\| \frac{x(k)}{M} \right\| - 1
 \]

- This can be extended by increasing the memory of the model even more.

- Recursive search for invariants: i.e. search for invariants that establish the desired properties partially, then use them as new information about the system to find stronger invariants.
An Example

Consider the program:

\[
\begin{align*}
x_1 &= 0; \quad x_2 = 0; \\
\text{while } x_2 &\leq 100, \\
\quad \text{if } x_1 &\geq 0, \\
\quad \quad x_1 &= x_1 - a; \\
\quad \text{else} \\
\quad \quad x_1 &= x_1 + b; \\
\text{end} \\
x_2 &= x_2 + 1; \\
\text{end}
\end{align*}
\]

This program can be modeled as a mixed integer/linear system with one binary and two slack variables:
\(x(k+1) = FX(k) \) subject to the additional linear constraint \(HX(k) = 0, \ k = 1, 2, \ldots\)

where \(X(k) = [x(k); w_1(k); w_2(k); v(k); 1] \) and

\[
x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

\[
F = \begin{bmatrix} 1 & 0 & 0 & 0 & -\frac{a+b}{2} & \frac{b-a}{2} \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & R & 0 \end{bmatrix}
\]

\[
H = \begin{bmatrix} 1 & 0 & -\frac{M}{2} & 0 & -\frac{M}{2} & 0 \\ 0 & 1 & 0 & R & 0 & R - 100 \\ 0 & 1 & 0 & 0 & R & 0 \end{bmatrix}
\]

\[
R = \frac{M+100}{2}.
\]

\(M \) is the overflow limit.

The program should be correct for all \(a \in \left(-\frac{M}{101}, M \right) \) and \(b \in \left(-\frac{M}{101}, M \right) \).
Figure 1: Shows the rather conservative results of analysis using QLF.
Figure 2: Analysis was significantly improved by increasing the memory of the model.