Texture Modulation-Constrained Image Decomposition

Georgios Evangelopoulos and Petros Maragos
School of ECE, National Technical University of Athens 15773, Greece

1. Outline - Contributions
 • Novel approach for image decomposition in structure-texture combinad and with texture modeling
 • New variational decomposition scheme, involving an explicit texture reconstruction constraint term formed by the responses of selected frequency-tuned linear filters
 • u+v image model of K+1 components
 • Additional features:
 • Texture image reconstruction
 • Potential for multiple texture subcomponents (scale & orientation selective)

2. Image decomposition
 • Structure + texture image models, \(f = u + v \)
 - ‘Cartoon’ u (geometry, objects, contours, edges, plateaus)
 - Texture v (oscillations, details)

3. Formulation for \(u+v \)
 \[E(u,v) = \left| f - u - v \right|_2^2 + \lambda \mu \int |\nabla u| + |\nabla v| \, dx \, dy + \rho |\nabla f|_2^2 + \lambda \mu \int |\nabla u| + |\nabla v| \, dx \, dy \]
 - Texture-wise mapping f \(\rightarrow u + v \)
 - \(t_j = y \frac{1}{|\mathcal{G}_j|} \) projection to \(\mathcal{G}_j \) (1 \(\leq j \leq K+1 \))

4. Texture AM-FM modeling
 • Narrowband texture components (AM-FM): \(t_j(x,y) = u_j(x,y) \sin(\theta_j(x,y)) \)

5. Texture reconstruction
 • Amplitude-weighted reconstruction
 \[\sum_{j=1}^{K+1} \frac{1}{\mu_j + \lambda_j} \sum_{k \in \mathcal{G}_j} (f * g_k)_k \]
 • Automatic energy-based component selection
 • Approximated O(2), analysis:
 \[\Psi \Psi = \sqrt{(\Psi \partial_x + \partial_x \Psi)(\Psi \partial_y + \partial_y \Psi)} \]

6. Example
 • Image f
 • Reconstruction term
 • Dominant component d

7. Comparisons

8. Extension to \(u+Kv \)
 \(K+1 \) components model
 \[f = u + v \quad \sum_{k=1}^{K} \frac{1}{K} \sum_{k \in \mathcal{G}_j} (f * g_k)_k \]
 • PDE’s (steady-state solution):
 \[u = \sum_{k=1}^{K} \frac{1}{K} \sum_{k \in \mathcal{G}_j} (f * g_k)_k \]
 • Summing subcomponents
 \[v = \sum_{k=1}^{K} \frac{1}{K} \sum_{k \in \mathcal{G}_j} (f * g_k)_k \]

9. A color example

10. Applications
 • Edge detection
 • Restoration

Relevant work

Acknowledgments
This work was supported by grants H2005-9061 and H2005-905 for financial by E.U. European Social Fund (75%) and the Greek Ministry of Development/GSRT (25%), and by the European Union-FP6-IST research Soil. MUSCLE and project IST-2010-269283 and ASPI.

For further information
More information can be found at: http://www.csee.umn.edu
Please contact George Evangelopoulos at gevag@cs.ntua.gr or maragos@cs.ntua.gr