

EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS

HALDANE LIEW
Massachusetts Institute of Technology, USA

Abstract. One of the problems in using shape grammars is being
able to describe succinctly and precisely the conditions necessary to
perform the appropriate transformation in a drawing. This paper
proposes new descriptors in shape grammars that can control rule
selection and the matching conditions between a schema and a
drawing. The framework for the descriptors is based on the decision
making process when applying a rule. This process is divided into six
phases: rule selection, drawing state, parameter requirements,
transformation requirements, contextual requirements, and application
method. The characteristic of each phase is described and some
examples are presented.

Introduction

Using the descriptors introduced in this paper, the author of a shape
grammar can (1) explicitly determine the sequence in which a set of rules is
applied, (2) restrict rule application with a filtering process, and (3) use
context to guide the rule matching process. The framework for developing
the new descriptors is based on the rule application process. There are four
basic actions to apply a rule: rule selection, drawing state, matching
conditions, and application method. These four actions can be expanded
into six phases specific to shape grammars as show in (figure 1). The
descriptors in each phase are characteristic of their respective phases.

The first step in applying a rule is to determine which rule to apply. The
rule selection phase controls the derivation of the grammar by determining
the availability and sequencing of rules. This phase has two descriptors:
directive and rule-set. The directive controls what rule should be applied
next based upon the success or failure of the given rule to apply in the
drawing. The rule-set descriptor uses a parallel description to determine
what set of rules is available to the user at any point during the derivation of
the grammar.

2 HALDANE LIEW

Rule

Figure 1. The six phases of the rule application process. The corresponding

descriptors for each phase are shown in italics.

Once a rule is selected, the user has to determine where to apply the rule.
The drawing state phase determines what portions of the drawing can be
used for rule application. The two descriptors in this phase are label-filter
and focus. Label-filter controls which labeled shapes are applicable based
on the labeled shapes in the left-hand schema of a rule. The labeled shapes
in the drawing that are not part of the left-hand schema are temporarily
removed. The focus descriptor restricts the application of a rule to specific
areas of the drawing demarcated by a special focus labeled polygon. A rule
can only apply to the areas inside the polygons.

The next three phases, parameter requirements, transformation
requirements, and contextual requirements, combine together to determine
the matching conditions for finding a subshape in the drawing. In order for
there to be a match, the requirements of all three phases must be fulfilled.
The parameter requirements phase determines what values are assigned to
the parameters of a schema in order to match a subshape in the drawing.
The transformation requirements phase determines what combinations of
transformations are necessary to match a subshape in the drawing. There are
no new descriptors in these two phases.

The contextual requirements phase adds an additional constraint that
determines if the context of the subshape satisfies a predicate. This phase
has two descriptors: maxline and zone. The maxline descriptor specifies that
a line in the subshape has to be a maximal line in the drawing. The zone

Drawing
State

Parameter
Requirements

Transformation
Requirements

Contextual
Requirements

Selection
Phase to determine which rule to use in a grammar.
[directive, rule-set]

Phase to determine where a rule can apply in the drawing.
[label-filter, focus]

Phase to determine the values given to the parameters of a
schema. g().

Phase to determine the transformations of a schema. t().

Phase to determine if the contextual constraints of a schema
are satisfied. [maxline, zone]

Phase to determine how a rule is applied to the drawing. Application
Method [apply-mode]

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 3

descriptor associates an area of the schema with a predicate function which
can be used to test portions of a drawing relative to the subshape. A
commonly used predicate function is the void function which tests if the area
relative to the subshape is void of all shapes.

The application method phase is the last phase in the rule application
process. This phase determines how a set of subshapes can be applied to the
drawing. Typically, the user applies the rule to one selected subshape, but
there are other possibilities such as a parallel application where the rule
applies to all the subshapes in a drawing. The only descriptor in the
application method phase is apply-mode.

There are descriptors for every phase except the parameter requirements
and transformation requirements phases. The other phases have one or more
descriptors for a total of seven new descriptors: directive, rule-set, label-
filter, focus, maxline, zone, and apply-mode. The rest of this paper will
provide details of each phase and any corresponding new descriptors. The
explanations will start in reverse order from the application method phase to
the rule selection phase.

Application method phase

The application method phase determines how a set of subshapes is applied
to a drawing. There can be many different subshape matches between the
left-hand schema of a rule and the drawing. Typically only one subshape is
used but there are other possibilities such as a parallel application which
would apply all subshapes at the same time. The descriptor, apply-mode,
allows the author of a grammar to specify what type of application a rule
should have.

APPLY-MODE

The apply-mode descriptor has three options named single, parallel, and
random. The single option allows the user to select one of the subshapes for
application. Figure 2B shows the selection of a single 2x2 square in the
upper right hand corner using the rule in figure 2A.

The second option is parallel. This option will apply the rule to all
possible subshapes in the drawing. In a 3x3 square grid, there are 14
different square subshapes. A derivation showing the effects of a parallel
application using the rule in figure 2A is shown in figure 2C.

The third option is named random. With this option, any subshape can be
applied to the drawing. The subshape can be randomly selected by the user
or if used in conjunction with a shape grammar interpreter, a computer can
randomly select the subshape (Chase 1989, 2002). This option can also be
used when all subshapes are known to produce an equivalent shape in spite
of differences in parameters and transformations. An example of this is

4 HALDANE LIEW

shown in figure 2D where the application of the rule in figure 2A will
produce the same result regardless of which transformation is selected.

A B

C D

Figure 2. (A) Rule that finds a square and places a circle in the middle of it. (B)

The derivation of the rule when the apply-mode is single. Here the user has selected
the upper right-hand square. (C) The derivation of the rule when the apply-mode is
parallel. A circle is placed in all 14 squares. (D) The derivation of the rule when

the apply-mode is random. All possible matches produce the same result.

Contextual requirements phase

The matching conditions between a schema and the drawing are traditionally
determined by the parameter function g() and the transformation function t()
which correspond to the parameter requirements and transformation
requirements phases. The third phase, contextual requirements, provides
additional matching constraints for the determination of a subshape based on
the context of the subshape in the drawing. These three phases, in
combination, determine the matching conditions of a schema.

One of the difficulties in using shape grammars is that the matching
conditions between the schema and the drawing works only on the shapes
found. It is not easy to define a schema that uses the surround conditions of
the subshape as part of the matching constraint. For instance, suppose the
author of a grammar wanted to define a schema that found rectangles that
were clear of any shapes on the inside.

This is difficult to define in the shape grammar language because there is
no direct convention that states that the inside of a subshape found in the
drawing must be empty of shapes. Instead such a condition could be defined
using a series of compound rules that combine shapes along with a parallel
description grammar (Knight 2003). The function in the parallel description
grammar is the algorithm that would determine if the inside of the rectangle
is void of any shapes. Other techniques include, adding additional
geometries or labels, constraining the transformations, or varying the
parametric values in order to isolate the desired condition.

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 5

Notice that these techniques complicate the situation and deviate from the
simplicity of the original condition which is succinctly stated as finding a
rectangle that is clear of any shapes on the inside. Instead of relying on
compound rules with parallel description grammars or using transformation
and parameter restrictions, the descriptors in the contextual requirements
phase rely on the visual properties of the subshapes. Determining if the
inside of a rectangle subshape is empty is a visual property of the subshape
relative to the drawing.

There are two descriptors in the contextual requirements phase: maxline
and zone. Maxline constrains a line in the subshape to be a maximal line.
The zone descriptor evaluates a predicate function against an area of the
drawing defined relative to the subshape. This method allows subshapes in a
drawing to assess the surrounding conditions. The zone descriptor can
directly define a schema that finds rectangles with no shapes on the inside.

MAXLINE

The maxline descriptor adds an additional constraint that the matching
subshape line must be a maximal line. By definition, a maximal line is a line
that can not be embedded in another line. The use of the maxline descriptor
allows the author of a grammar to specify that a line in the subshape is a line
that is not a smaller portion of a larger line in the drawing.

For example, figure 3A shows a rule where the left-hand schema is a
square composed of maxline lines. By using this rule only one subshape, the
outer square, can be found because of the restriction that all the lines in the
square must be maximal lines (figure 3B). A parallel application of the rule
without the maxline descriptor would result with a circle in all 14 possible
squares as shown in figure 2C. The use of the maxline descriptor therefore
defines a schema that differentiates the larger outer square from the smaller
inner squares in the drawing.

A

maxline

maxline

B

Figure 3. (A) Rule where the left-hand shape is composed of lines with the maxline

descriptor. (B) The parallel application of the rule on a 3x3 grid. Only the larger
outer square is possible for selection.

Another key use of the maxline descriptor is to define schemata that are
determinate. A determinate schema is one that has a finite number of
subshapes in a drawing. An indeterminate schema has an infinite number of

6 HALDANE LIEW

subshapes. A schema composed of only one line is indeterminate because
there are an infinite number of lengths that can be embedded in a line. Often
times, a determinate shape is desired to fix the number of possibilities. The
maxline descriptor can be used to make a line a determinate shape.

The descriptors are based on the shape grammar language. Therefore, the
same effect can be achieved without the use of the new descriptors. To
describe a schema that finds a maximal line without the use of the maxline
descriptor requires thinking about how to specify the same conditions using
the transformation and parameter components. The maxline descriptor is the
equivalent to restricting the scaling factor of the line to be at 100%. In other
words, the line must match the entire line.

The descriptors in this phase can be considered shortcuts for the
equivalent definitions in the shape grammar language. But more importantly
the descriptors describe a rule by emphasizing certain visual conditions as
opposed to emphasizing the descriptive methods of the shape grammar
language. For the maxline descriptor it is the difference between seeing a
line as a whole versus seeing the line as a scaling factor of 100%.

ZONE

The zone descriptor adds an additional constraint on the matching conditions
of a schema in the form of a predicate function. With the use of the zone
descriptor, not only must the geometry of the schema be embedded in the
drawing, the predicate must also be true. The predicate function evaluates a
marked area of the schema to determine if the predicate is true or false. By
using the zone descriptor, the schema can use the context of the drawing in
which the subshape is found as part of the constraints.

A commonly used function is the void function which states that the
demarcated area must be void of any shape. The void zone enables the
schema to detect empty spaces relative to the subshapes found in the
drawing. Other computational formalisms, such as structure grammars
(Carlson and Woodbury 1992), have also used the concept of a void.

The void zone can be used to differentiate subshapes in a drawing as
demonstrated in figure 4. Suppose the author of a grammar wants a rule that
will pick out only the nine smaller squares in a 3x3 grid. Using the rule in
figure 2A will find all 14 different types of squares. In order to find only the
nine smaller squares, the rule in figure 4A is used which has a void zone to
demarcate that the area inside the square must be empty. A parallel
application of the rule is shown in figure 4B.

The use of the void zone therefore differentiates the smaller squares from
the larger squares. This occurs because whenever a larger square is selected,
the void zone constraint rejects the subshape since there are lines in the
interior of the square. In other words, the void predicate function returns

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 7

false. The void zone can also be used to distinguish other types of squares in
the grid. To define a schema that selects only the corner squares, one could
use the rule in figure 4C.

The difference between figure 4A and 4C is that the void zone in figure
4C has been enlarged to cover one corner of the square. A corner square has
the characteristic that one corner of the square does not have any protruding
lines. By expanding the void zone to cover one corner, the rule is
guaranteed to select only the corner squares. A parallel application is shown
in figure 4D. A similar approach is used to define a rule that finds only the
edge squares as shown in figures 4E and 4F.

A

void

B

C

void

D

E

void

F

Figure 4. (A) A rule that finds a square such that the inside of the square is void of
all shapes. (B) The parallel application of figure 4A. (C) A rule that finds a corner

square. (D) The parallel application of figure 4C. (E) A rule that finds an edge
square. (F) The parallel application of figure 4E.

Transformation requirements phase

The transformation requirements phase determines what transformations are
necessary in order to have a subshape match in the drawing. This phase
corresponds with the t() function. There are no new descriptors in this
phase. The transformations include translation, rotation, reflection and
scaling. Restrictions can be stipulated by specifying a value such as setting
the scaling factor to be 100%, which is the equivalent of the maxline

8 HALDANE LIEW

descriptor, or by specifying the type of transformations to use such as all
transformations except for reflection.

Parameter requirements phase

The parameter requirements phase corresponds with the g() function and
determines what values are given to the parameters of a schema in order to
have a subshape match in the drawing. There are no new descriptors in this
phase. A common use of the g() function is to determine the parameters for
the size of a shape. Restrictions can be placed on the parameters to match
certain types of subshapes in the drawing.

Drawing state phase

The drawing state phase determines where a rule can and can not apply by
altering the state of the drawing. Typically, the entire drawing is used to
look for a possible subshape match between the left-hand schema of a rule
and the drawing. But sometimes this is not desirable. For instance, when
affecting changes on a drawing that only affect the walls of a building, it
might be useful to alter the drawing so that only the walls are visible for
manipulation. In another situation, maybe the design rules are concerned
with affecting changes in only one room. It might then be advantageous to
alter the drawing so that only the one room is visible for manipulation
(figure 5).

Figure 5. A plan drawing of a building by Durand (left) with alternative views
where only the walls are visible (middle) and where only one room is visible (right).

The examples above all alter or “see” the drawing in a different context.
If we are concerned with only walls, we see only walls. If we are concerned
with seeing a particular room, we see only that particular room. This
process of seeing a drawing as something else is part of the design process.
Schön and Wiggins (1992) has characterized this seeing as a part of the
cyclical see-move-see process in design. The designer sees the drawing as
something and evaluates the design to make a move. This in turn generates a
new drawing which can be re-interpreted and re-evaluated to make new
moves.

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 9

In a similar fashion, the modifications permitted by the drawing context
phase gives a rule the ability to see the drawing as something else. What we
see varies greatly and depends, in part, on the context in which the rule is
applied. The ultimate goal of this phase is to view the drawing in such a
way as to isolate the parts of the drawing that are important. A drawing can
be quite complex and the drawing state phase is a means to manage that
complexity by removing parts of the drawing that are not of interest at the
time.

The descriptors in the drawing state phase provide two generic methods
for altering the drawing. The first method is information filtering which
filters out unnecessary shapes from the drawing. What shapes to filter out is
dependant on the labeled shapes in the left-hand schema. This method has
the same effect as looking at only a specific labeled shape, such as walls, in a
drawing (figure 5 middle). The name for this descriptor is label-filter.

The second method is based on visual attention. When a person pays
attention to a particular object in a drawing, they produce what is commonly
called the searchlight of attention (Posner 1980). The location and scope of
the searchlight determines what the person is focused on. This effect is
abstractly mimicked using the focus descriptor. An area of focus is
demarcated by placing an enclosed polygonal shape in the drawing. All
areas outside of the polygonal shape are ignored. This method has the same
effect as looking at a specific room in a drawing (figure 5 right).

LABEL-FILTER

The label-filter descriptor filters out any labeled shapes in the drawing that
does not have the same labels as those used in the left-hand schema of a rule.
In an architectural setting, the label-filter option could be used to filter out
background information in a drawing. For instance, a drawing can consist of
walls where the square grid pattern is used as the centerline (figure 6B). The
black lines represent wall labeled lines and the gray lines represent the grid
labeled lines. To select an empty room, the schema in figure 6A, which
looks for a rectangular room that is void of shapes on the interior, could be
used.

Unfortunately this schema will find no rooms in figure 6B because the
void zone will detect the grid labeled lines whenever it finds a room. To fix
this problem, the label-filter option in the schema is turned on (figure 6C).
This has the effect of removing any labeled shapes in the drawing that are
not part of the labeled shapes used in the schema (figure 6D). Since the
schema does not have any grid labeled lines in it, the grid labeled lines in the
drawing are temporarily removed before searching for an empty room. With
the grid lines removed, the three empty rooms can now be selected.

10 HALDANE LIEW

voidvoid

label-filter: off

voidvoid

label-filter: on

A B C D

Figure 6. (A) A schema that looks for an empty rectangular room with the label-
filter option turned off. (B) A drawing where the grid lines are used as the

centerline for the wall. (D) A schema that looks for an empty rectangular room with
the label-filter turned on. (C) A drawing showing the effects of the label-filter

option. Only the wall labeled lines, shown in black, remain.

FOCUS

The focus descriptor controls what area or areas of the drawing can be used
to find a subshape match. These areas are demarcated by enclosed polygons
composed of a special labeled line named “focus”. The focus lines can be
altered and erased, just like any other labeled line and the enclosed polygons
can be of any shape, concave or convex, as long as the lines do not intersect
themselves or another focus polygon.

When a drawing contains an enclosed polygon composed of focus lines,
all lines outside of the enclosed area are temporarily removed from the
drawing. This temporary state is persistent until the focus lines are erased.
Therefore, once a focus line is placed, all subsequent rules can only apply
inside the demarcated areas. To apply a rule outside of the focus area, the
focus lines have to be erased.

In an architectural setting, the focus lines can be used to define where
changes can occur. For instance, suppose the task is to replace a wall with a
series of columns at grid intersections (figure 7). The straightforward
method is to write rules that transform walls of various sizes into a series of
columns. The problem with this method is that you will need an infinite
number of rules to accommodate the infinite number of possible wall and
grid sizes.

Figure 7. The derivation shows one wall of the floor plan transformed into a series

of columns where the columns are placed at the grid intersections.

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 11

Another method is to develop a procedural series of rules that can vary
according to the size of the wall and grid. A derivation of this process is
shown in figure 9 using the rules in figure 8. The first step is to define the
area where the columns will be placed. In this particular case, it is in a wall.
We can use rule A1 to place a focus rectangle around the desired wall. The
next step is to place columns at the grid intersections. This can be achieved
by applying rule A2 in parallel. If the focus rectangle did not exist, then the
rule would have applied to all the grid intersections in the drawing as
opposed to only the grid intersections inside the focus rectangle. The last
step is to replace the walls and remove the focus polygon so that subsequent
rules can apply to the entire drawing using rule A3.

A1

focus

A2

A3

focus

Figure 8. Rule A1 places a focus rectangle around a wall. Rule A2 places a column
at a grid intersection. Rule A3 removes the focus lines and caps off the walls.

Rule A1

Rule A2 (parallel)

Rule A3

Figure 9. Derivation to replace a wall with a series of columns using the rules in

figure 8. Rule A1 adds a rectangular focus to the selected wall. Rule A2 is applied
in parallel to place a column at every grid intersection inside the focus area. The

last rule applied is rule A3 which removes the focus lines and patches up the walls.

The three step process I have just described requires that the rules are
applied sequentially and in the correct order. Typically this is achieved by

12 HALDANE LIEW

using state labels. The next section will show some alternative methods for
controlling the execution of a grammar.

Rule selection phase

The rule selection phase determines the flow of the grammar by
manipulating the availability and sequencing of rules. A grammar is
composed of rules which can be placed into three general categories (figure
10). Of all the rules in the grammar, typically only a subset of the rules will
have an effect on the drawing at any point during the derivation. This is the
first category: applicable vs. inapplicable. The applicable rules can be
further divided into constructive or destructive rules. Just because a rule can
affect changes in the drawing does not necessarily mean it is the productive
change for the design. The final category subdivides constructive rules into
salient and deterministic rules (Li 2002). Salient rules provide the user of a
grammar with design choices. Deterministic rules, on the other hand, are
mechanistic rules used to complete a design transformation.

Figure 10. The three general categories of rules are applicable vs. inapplicable,

constructive vs. destructive, and salient vs. deterministic.

Ideally, a grammar should provide the user with rules that are applicable,
constructive and salient in nature. There are two descriptors in the rule
selection phase towards achieving this goal: directive and rule-sets. The
directive is used to define an explicit sequence of rules called a macro. The
sequence is dependant upon the success or failure of a given rule to apply.
The rule-set descriptor determines the availability of a set of rules at any
point during the derivation of the grammar. Sets of rules are typically
associated with stages of a grammar.

DIRECTIVE

The directive descriptor adds an additional component to the rule that
dictates which rule to apply next depending upon the success or failure of
the current rule to apply. There are two options to the directive descriptor:
success rule and failure rule (figure 11). The success rule determines which
rule to apply next if the rule was successfully applied. The failure rule

All Rules

Applicable

Inapplicable

Constructive

Destructive

Deterministic

Salient

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 13

determines which rule to apply next if the rule fails to apply. This occurs
when the left-hand schema of a rule does not exist in the drawing. The rule
specified in the success rule or failure rule can be any rule in the grammar
including itself.

Figure 11. Diagram showing the components of the directive descriptor.

By using the directive descriptor, the author of a grammar is able to link a
series of rules together to create a macro. A macro is composed of a primary
rule and one or more secondary rules. The primary rule is the first rule in
the macro. The secondary rules are the rules that succeed the primary rule.

An example of how the directive can be used in a grammar is shown in
figures 12-14. Suppose the design task is to generate a series of walls using
an underlying pattern as the centerline (figure 12). One method to achieve
this effect is to offset the centerlines half the thickness of the walls and then
trim off lines at the intersections where the walls join. This process can be
achieved by applying the four rules in figure 13 in sequential order.

Figure 12. The derivation shows orthogonal centerlines (shown in gray) used as a

basis to generate the walls (shown in black).

Each rule is linked to the next rule through the use of the directive. Rule
R01 is applied in parallel first then rule R02, R03, and R04. R01 is the
primary rule and R02, R03, and R04 are the secondary rules. Since rule R03
and R04 are subshapes of R02, it is possible for rule R03 and R04 to apply
in situations where rule R02 should have been applied instead. For this
reason, if the rules are applied in a different order, the results could
potentially be incorrect and produce a dead-end state (Liew 2002). The
derivation of the four rule macro is shown in figure 14.

Given Rule
A → B

Success Rule
Left-hand schema is embedded in drawing

Left-hand schema is not embedded in drawing
Failure Rule

14 HALDANE LIEW

SS00

SS00R01R01

S:R02, F:NILS:R02, F:NIL

S:R04, F:R04S:R04, F:R04

S:R03, F:R03S:R03, F:R03

S:NIL, F:NILS:NIL, F:NIL

2x2x

xx

2x2x

2x2x

2x2x2x2x

2x2x

maxlinemaxline

xx

R03R03 R04R04

R02R02

Figure 13. A macro composed of four rules linked together using the directive

descriptor. Rule R01 offsets a pair of lines by distance x. R02 trims off the excess
lines that occur in a cross intersection. R03 does the same for T intersections. And

R04 trims and connects lines in an L intersection.

R01R01 R02R02

R03R03

R04R04

Figure 14. Derivation showing the result of applying the four rule macro shown in

figure 13. All rules applications are parallel applications.

To achieve the same effect without the use of the directive descriptor
requires the use of labeled points which act as state labels. Each rule would
need to have a unique state label so that there is no confusion as to which
rule to apply. For a grammar with few rules, this is a manageable task. But
if there are hundreds of rules with hundreds of unique state labels, the
grammar becomes daunting and unmanageable. The directive manages the
complexity of having numerous state labels by placing the information of
which rule to apply within the rule.

The main difference between using state labels and the directive
descriptor are: (1) The mechanism for determining the next rule, when using
the directive, is not in the drawing but in the rule; (2) The directive creates a

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 15

macro which can not be subverted by adding a rule with the same state label;
(3) The directive has a failure component which allows an alternative rule to
apply if a rule fails. The failure component can be used as a terminal case
for recursive rules.

A macro is designed to start from the primary rule. If the user picks a
secondary rule to apply, the macro will not necessarily work as intended.
Often times, the author of a grammar wants to prevent the user from
selecting the secondary rules of a macro because it can have negative effects
on the design. One means of controlling this restriction can be accomplished
by using the rule-set descriptor described in the next section.

RULE-SET

The rule-set descriptor provides the user of a grammar with a set of rules at
any point during the derivation of a grammar. This is achieved with a
parallel description that contains a group of rules called a rule-set. A rule-set
usually corresponds to one stage of a grammar. A change in the rule-set is
the same as going from one stage of the grammar to another. A rule is able
to modify the rule-set with three control options: set-rule, which defines the
set of rules that are available, add-rule, which inserts additional rules into the
rule-set and sub-rule, which removes rules that exist in the rule-set. An
illustrative derivation is shown in figure 15 where the rule-set of each step is
complete different from the previous step.

R01

R02

R03

R04 R08

R07

R06

R05 R09

R10

R11

R12

Figure 15. An illustrative derivation of a grammar showing the changes in the rule-

sets. Each step is composed of a drawing on the left and the parallel rule-set
description on the right. In the first step, the rule-set is composed of R01, R02,

R03, and R04. In the second step, the rule-set changes to R05, R06, R07 and R08.

The appropriateness of the rules in the rule-set is determined by the
author. Ideally, the rule-set should include only rules that are applicable,
constructive and salient. By presenting the user with all viable options, the
rule-set mechanism alleviates the need for the user to determine which rules
can and can not apply at any stage of the grammar.

The rule-set descriptor helps the author to organize a complex set of rules
when designing a grammar. The author has the flexibility to use the same
rule in different stages of the grammar. He can also prevent the user from
using a rule, even if it is applicable, by not including the rule in the rule-set.

16 HALDANE LIEW

This method is commonly used in conjunction with macros. By including
only the primary rule of a macro in the rule-set, the author of a grammar can
prevent the user from selecting the secondary rules.

Figure 16 is a diagram of a sample grammar that illustrates how rule-sets
in combination with directives can be used to define and manipulate stages
of a grammar. The diagram shows the first three stages of a sample
grammar. In the first stage, the user has four options: R01, R03, R06, and
R07. This stage also has two macros: R01+R02 and R03+R04+R05.
Although the actual number of rules in the first stage is seven, the user can
only select four of the rules. The rule-set descriptor acts as a filter to
differentiate the salient rules from the deterministic rules of a macro.

Stage1

Figure 16. Diagram showing how stages of grammar can be defined using the rule-
set and directive descriptors. Each stage created by the rule-set is represented by a
gray box and the white rectangles inside are rules. The user can select any of the

rules in the gray boxes. The lines connecting the rules together represent a directive
link. A success rule is denoted by the letter “S” and a failure rule is denoted by the
letter “F”. If there is no letter then both the success and failure rules are the same.

Two of the rules in the first stage change the rule-set with the rule-set
controls. Rule R06 uses the sub-rule control to remove rule R01 and R06
from stage1. This might occur when a rule affects some changes to the
drawing which makes other rules no longer useful. Rule R07 changes the
rule-set to go to stage2 which is composed rules R08 through R13. This can
be achieved by using set-rule or combining both the sub-rule and add-rule

Stage2 Stage3

R01 R02

R03

R06

R07

R04 R05

S

SF

F

R08

R10

R12

R13
F

R14

R02

R15

R01

R18

R16 R17

S

S

F

Stage1B

R03

R07

R04 R05
S

S

R09

R11

S

S Stage4
etc…

S

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 17

controls to define the new rule-set. Rule R13 changes the rule-set in stage2
to go to stage3 if it is applied successfully to the drawing. If rule R13 can
not be applied to the drawing then the rule-set is changed to go back to
stage1. Such a move might occur if certain conditions do not exist in the
drawing and requires rules in another stage to implement the necessary
changes.

The rule-set can also reuse rules from other stages of the grammar as
sho

ess of modifying state labels in
rul

Implications of the six phases

 of the six phases in the rule application

(1)

 C’= C - t(g(A)) + t(g(B)) (2)

The new phases, rule selection, drawing state, and contextual
req

etween a schema and the drawing
are

original formula as follows:

wn in the stage3 of the diagram. Stage3 has seven rules but the rule-set
only allows the user to select four of the rules. Two of the rules in the rule-
set are the primary rules of a macro. One of the two macros, R01+R02, is a
macro from stage1. The rule-set description allows a rule to be used in any
rule-set without having to modify the rule.

The rule-set descriptor simplifies the proc
es by providing a separate mechanism that explicitly groups rules

together. The key difference between using the rule-set descriptor and using
state labels is the parallel description in rule-sets that succinctly displays for
the user what rules are available for application. Both methods are control
flow mechanisms and may be combined together to obtain even more
detailed control over the execution of a grammar.

I have described characteristics
process and their corresponding descriptors. Three of the phases, parameter
requirements, transformation requirements, and application method are
based on the original formulas (equations 1-2) which are concerned with the
mechanics of applying a rule (Stiny 1980, 1990, 1991).

 t(g(A)) ≤ C

uirements complement the original formula by addressing the decision
making process when applying a rule. These phases can be incorporated
together to generate a new set of formulas.

Traditionally, the matching conditions b
 determined by the parameters, the transformations, and the parts relation.

The contextual requirements phase introduces an additional matching
constraint based on a predicate function. In order for a schema to have a
subshape match in a drawing, all three components must be true. The
parameters and transformations must produce a shape that is embedded in
the drawing and the predicate function must be true. This changes the

18 HALDANE LIEW

 p(t(g(A))) ≤ C (3)

Here p() is the additional predicate function of the contextual
here are two descriptors in this phase: maxline a

zon

t changes what the rule sees in the drawing.
ase has two descriptors: label-filter and focus. T

lab

(5)

 + t(g(B))

Here p() is associated with the contextual requirements phase and s() is
phase. And finally, to have a set of

po

entire set of subshapes to drawing C:

anics of the rule
es the drawing state, parame

requirements phase. T nd
e. The maxline descriptor tests to make sure the subshape lines used for

embedding are maximal lines. The zone descriptor tests a predicate function
against a demarcated area of the subshape in the drawing. One commonly
used predicate is void which checks if an area of the drawing is void of all
shapes.

The contextual requirements phase modifies the matching condition
between the schema and the drawing by altering the schema. The drawing
state phase, on the other hand, modifies the matching condition by altering
the drawing. The goal of the drawing state phase is to isolate portions of the
drawing for rule application. This is achieved by hiding elements or areas of
the drawing. This phase is composed of functions that “see” the drawing in
a different context. The “see” function can be incorporated into the original
formula in the follow manner:

 t(g(A)) ≤ s(C) (4)

Here s() is the function tha
The drawing state ph he

el-filter descriptor determines what elements of a drawing can be used for
a subshape match. When the label-filter option is used, all labeled shapes in
the drawing that are not in the left-hand schema of a rule will be removed.
The focus descriptor, on the other hand, determines what areas of the
drawing can be used for a subshape match. The applicable areas are defined
by enclosed polygons marked by special focus labeled lines. Any shape
outside of the enclosed polygons can not be used for a subshape match.

Putting the two modifications together we get the following formulas:

 p(t(g(A))) ≤ s(C)

 C’= C - p(t(g(A))) (6)

associated with the drawing state all
ssible subshapes:

 For all t and g such that p(t(g(A))) ≤ s(C) (7)

And to apply the

 C’= ∑(C - p(t(g(A))) + t(g(B))) (8)

The formulas mentioned so far deal with the mech
application process. This includ ter

 EXTENDING SHAPE GRAMMARS WITH DESCRIPTORS 19

req

he
des

stic of each phase
dea

diagram shows how the seven descriptors relate to the six phases of
the rul ion process and the new formulas in the shape grammar language.

uirements, transformation requirements, contextual requirements and
application method phases. The rule selection phase does not apply to the
above formulas because it deals with the overall control of the grammar.

The two descriptors in the rule selection phase are rule-set and directive.
Rule-sets are an explicit mechanism for grouping rules in a grammar. T

criptor uses a parallel description to show the user which rules are
available to choose from at different stages in the grammar. The directive is
another control mechanism that dictates which rule to apply next depending
upon the success or failure of a given rule to apply. Both descriptors are
alternatives to the use of state labels which is the traditional method used in
shape grammars to control the execution of the grammar.

The six phases of the rule application process is the framework for
developing the new descriptors (figure 17). The characteri

ls with the decisions necessary to apply a rule. By developing
descriptors that can manipulate those decisions, greater control is obtained
over how a rule is selected and what the matching conditions are between
the left-hand schema of a rule and a drawing. The descriptors provide
mechanisms for rule selection, a method to incorporate context as part of the
schema definition, and a means to filter information in a drawing. The set of
new descriptors creates a type of meta-language for the shape grammar
language (Liew 2003).

Figure e 17. Th

e applicat

For all t and g such that Drawing
State

Pa r
Requirements

ramete

Transformation
Requirements

Contextual
Requirements

Rule
Selection

Application
Method

p(t(g(A))) ≤ s(C)

Parallel descriptions and state labels

apply-mode

label-filter, focus

directive, rule-set

maxline, zone

C’ = ∑(C – p(t(g(A))) + t(g(B)))

20 HALDANE LIEW

References

arlson, C and Woodbury, R: 1992, Structure grammars and their application toC
design, in DC Brown, M Waldron, and H Yoshikawa (eds), Intelligent Computer

ign, Elsevier Science Publishers, Amsterdam, pp. 107-132.
9, Shapes and shape grammars: from mathematical model to computer

Ch n systems,

Kni
ing & design 30: 125-155.

nd the Virtual - design e-ducation,

Sch
sign Study 13(2): 135-156.

& design 7: 343-351.

Th aper (with corrections):

 (ed), Design Computing and Cognition ’04, Kluwer Academic
Publishers, Dordrecht, pp. 417-436.

Aided Des
Chase, S: 198

implementation, Environmental and Planning B: planning & design 16: 215-
242.
ase, S: 2002, A model for user interaction in grammar-based desig
Automation in Construction 11: 161-172.
ght, T: 2003, Computing with emergence, Environmental and Planning B:
plann

Li, A: 2002, A prototype interactive simulated shape grammar, in K Koszewski and
S Wrona (eds), Connecting the Real a
Proceedings of the 20th Conference on Education in Computer Aided
Architectural Design in Europe, eCAADe, Warsaw, pp. 314-317.

Liew, H: 2002, Descriptive Conventions for Shape Grammars, in G Proctor (ed),
Thresholds - Design, Research, Education and Practice, in the Space Between
the Physical and the Virtual, Proceedings of the 2002 Annual Conference of the
Association for Computer Aided Design In Architecture, ACADIA, Pomona, pp.
365-378.

Liew, H: 2003, SGML: A Shape Grammar Meta-Language, in W Dokonal and U
Hirschberg (eds), Digital Design, Proceedings of the 21st Conference on
Education in Computer Aided Architectural Design in Europe, eCAADe, Graz,
pp. 639-647.

Posner, M: 1980, Orienting of attention, Quarterly Journal of Experimental
Psychology 32: 3-25.
ön, DA and Wiggins, G.: 1992, Kinds of Seeing and Their Functions in
Designing, De

Stiny, G: 1980, Introduction to shape and shape grammars, Environmental and
Planning B: planning

Stiny, G: 1990, What is a design? Environmental and Planning B: planning &
design 17: 97-103.

Stiny, G: 1991, The Algebras of Design, Research in Engineering Design 2: 171-
181.

is is a copy of the p

Liew, Haldane (2004) Extending Shape Grammar with Descriptors, in J.
Gero

	Introduction
	Application method phase
	APPLY-MODE

	Contextual requirements phase
	MAXLINE
	ZONE

	Transformation requirements phase
	Parameter requirements phase
	Drawing state phase
	LABEL-FILTER
	FOCUS

	Rule selection phase
	DIRECTIVE
	RULE-SET

	Implications of the six phases
	References

